返回
专题      专题
返回

目录

动脉粥样硬化模型

C57BL6小鼠

C57小鼠
动脉粥样硬化模型




C57BL/6小鼠
动脉粥样硬化模型造模的高脂高胆固醇模型饲料(纯化型)
High Fat High Cholesterol (HFHC) Diet for Atherosclerosis in C57BL6 Mice

一、C57小鼠动脉粥样硬化模型Paigen饲料(纯化型)


纯化型Paigen饲料(高脂高胆固醇模型饲料)是C57小鼠动脉粥样硬化模型造模(复制)最广泛使用的动脉粥样硬化模型造模模型饲料。

1.纯化型Paigen饲料的优势

(1)纯化型Paigen模型饲料是Paigen等研究者对脂肪含量、脂肪类型、胆固醇含量、胆盐含量进行了一系列优化后形成的含有高饱和脂肪、高胆固醇并添加胆盐的模型饲料,其中,15%脂肪,1.25%胆固醇,0.5%胆盐( 15% fat, 1.25% cholesterol, and 0.5% sodium cholate)。经过几十年来的使用,效果稳定,

(2)由于是纯化型饲料,原料中不含影响实验结果的因素。

(3)与日粮型Paigen饲料相比,纯化型饲料的唯一缺点是价格偏高,但由于小鼠每天摄入饲料量较小(只有5g左右),因此,实际需要的成本都能在可接受的范围。

因此,纯化型Paigen模型饲料成为C47小鼠中经典的复制动脉粥样硬化模型的理想饲料。正是这样的原因,我们鼓励研究人员优先选用纯化型。事实上,SCI论文中绝大多数都采用这种类型。

2.纯化型Paigen饲料的缺点

纯化型Paigen饲料存在两方面的问题:一是由于对实验动物营养需求的认识,该模型饲料诞生时营养素配比存在不合理,需要优化;二是,当时是针对接近成年C57小鼠进行配比和研究,如果在成年动物开始喂养有其是在老龄小鼠中复制模型时需要优化。点击浏览详细介绍:纯化型Paigen高脂高胆固醇模型饲料及造模注意事项

因此,南通特洛菲饲料科技有限公司提供了3种不同代码的纯化型Paigen饲料供研究者选用:不优化(TP28900),优化到未成年期喂养的动物(TP28620),特别针对成年期动物进行了设计(TP28640)。

此外,高蛋氨酸摄入可以引起高同型半胱氨酸血症,从而对动脉粥样硬化发挥作用,因此,南通特洛菲饲料科技有限公司还提供在Paigen饲料中添加蛋氨酸的模型饲料(TP28800和TP28810),以及维生素B12和叶酸缺乏的模型饲料(TP25580和TP25581)。

南通特洛菲饲料科技有限公司
纯化型Paigen模型饲料

纯化型Paigen饲料

markerTP28600

与Paigen模型饲料设计相同,15%脂肪,1.25%胆固醇,0.5%胆盐,用于未成年开始喂养。点击:展开↓

markerTP28620

与Paigen模型饲料相似,15%脂肪,1.25%胆固醇,0.5%胆盐,但优化了微量营养素。用于未成年期开始喂养。点击:展开↓

markerTP28640

与Paigen模型饲料设计相似,15%脂肪,1.25%胆固醇,0.5%胆盐,但针对成年或将近动物而特别设计。点击:展开↓

纯化型Paigen饲料添加蛋氨酸

markerTP28800

与Paigen模型饲料设计相同,15%脂肪,1.25%胆固醇,0.5%胆盐,并添加蛋氨酸。用于未成年开始喂养。点击:展开↓

markerTP28810

与Paigen模型饲料设计相同,15%脂肪,1.25%胆固醇,0.5%胆盐,并添加蛋氨酸。用于成年开始喂养。点击:展开↓

纯化型Paigen饲料+B12和叶酸缺乏

markerTP25580

与Paigen模型饲料设计相同,15%脂肪,1.25%胆固醇,0.5%胆盐,但B12和叶酸缺乏。用于未成年开始喂养。点击:展开↓

markerTP25581

与Paigen模型饲料设计相同,15%脂肪,1.25%胆固醇,0.5%胆盐,其中,维生素B12和叶酸缺乏。用于成年开始喂养。点击:展开↓

二、C57小鼠动脉粥样硬化模型纯化型Paigen饲料购买和使用注意事项


(1)复制模型的对照饲料应当采用配套的纯化型模型饲料,而不应当使用一般喂养的日粮型饲料。

(2)模型喂养效果的关键还取决于动物的年龄、性别。因此,在实验设计方面务必注意。

(3)模型饲料中胆盐可能对某些生化指标或者分子生物学指标有影响。

(4)除了动脉粥样硬化,还可能伴有胆结石或脂肪肝。

对于这些方面如果有疑问,请与南通特洛菲饲料科技有限公司技术部联系。

References:

Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, et al. Disturbed Flow Promotes Endothelial Senescence via a p53-Dependent Pathway. Arteriosclerosis, thrombosis, and vascular biology. 2014.

Wanschel AC, Caceres VM, Moretti AI, Bruni-Cardoso A, de Carvalho HF, de Souza HP, et al. Cardioprotective mechanism of S-nitroso-N-acetylcysteine via S-nitrosated betadrenoceptor-2 in the LDLr-/- mice. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society. 2014;36:58-66.

Steiner T, Francescut L, Byrne S, Hughes T, Jayanthi A, Guschina I, et al. Protective role for properdin in progression of experimental murine atherosclerosis. PloS one. 2014;9(3):e92404.

Simsekyilmaz S, Cabrera-Fuentes HA, Meiler S, Kostin S, Baumer Y, Liehn EA, et al. Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation. 2014;129(5):598-606.

Plat J, Theuwissen E, Husche C, Lutjohann D, Gijbels MJ, Jeurissen M, et al. Oxidised plant sterols as well as oxycholesterol increase the proportion of severe atherosclerotic lesions in female LDL receptor+/ - mice. The British journal of nutrition. 2014;111(1):64-70.

Neuhofer A, Wernly B, Leitner L, Sarabi A, Sommer NG, Staffler G, et al. An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovascular diabetology. 2014;13:23.

Meydani M, Kwan P, Band M, Knight A, Guo W, Goutis J, et al. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet. Atherosclerosis. 2014;233(1):196-205.

Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014;232(1):40-51.

Funke A, Schreurs M, Aparicio-Vergara M, Sheedfar F, Gruben N, Kloosterhuis NJ, et al. Cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male LDL receptor knockout mice. Atherosclerosis. 2014;232(2):390-6.

de Haan W, Bhattacharjee A, Ruddle P, Kang MH, Hayden MR. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. Journal of lipid research. 2014;55(3):516-23.

Dai Y, Palade P, Wang X, Mercanti F, Ding Z, Dai D, et al. High fat diet causes renal fibrosis in LDLr-null mice through MAPK-NF-kappaB pathway mediated by Ox-LDL. Journal of cardiovascular pharmacology. 2014;63(2):158-66.

Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A. Programmed Cell Death-1 Deficiency Exacerbates T Cell Activation and Atherogenesis despite Expansion of Regulatory T Cells in Atherosclerosis-Prone Mice. PloS one. 2014;9(4):e93280.

Busch M, Westhofen TC, Koch M, Lutz MB, Zernecke A. Dendritic cell subset distributions in the aorta in healthy and atherosclerotic mice. PloS one. 2014;9(2):e88452.

Al Rajabi A, Castro GS, da Silva RP, Nelson RC, Thiesen A, Vannucchi H, et al. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. The Journal of nutrition. 2014;144(3):252-7.

Zhao J, Zhu H, Wang S, Ma X, Liu X, Wang C, et al. Naoxintong protects against atherosclerosis through lipid-lowering and inhibiting maturation of dendritic cells in LDL receptor knockout mice fed a high-fat diet. Current pharmaceutical design. 2013;19(33):5891-6.

Zhang BC, Li XK, Che WL, Li WM, Hou L, Wei YD, et al. [Peroxisome proliferator-activated receptor alpha/gamma agonist tesaglitazar stabilizes atherosclerotic plaque in diabetic low density lipoprotein receptor knockout mice]. Zhonghua xin xue guan bing za zhi. 2013;41(2):143-9.

Yoshimura Y, Nishii S, Zaima N, Moriyama T, Kawamura Y. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese, diabetic KK-A(y) mice. Biochemical and biophysical research communications. 2013;434(3):486-91.

Xia M, Chen D, Endresz V, Faludi I, Szabo A, Gonczol E, et al. Immunization of Chlamydia pneumoniae (Cpn)-infected Apob(tm2Sgy)Ldlr(tm1Her)/J mice with a combined peptide of Cpn significantly reduces atherosclerotic Wen S, Jadhav KS, Williamson DL, Rideout TC. Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice. Journal of lipids. 2013;2013:908048.

Wang S, Miller B, Matthan NR, Goktas Z, Wu D, Reed DB, et al. Aortic cholesterol accumulation correlates with systemic inflammation but not hepatic and gonadal adipose tissue inflammation in low-density lipoprotein receptor null mice. Nutrition research. 2013;33(12):1072-82.

van Leeuwen M, Kemna MJ, de Winther MP, Boon L, Duijvestijn AM, Henatsch D, et al. Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PloS one. 2013;8(7):e68039.

Subramanian S, Turner MS, Ding Y, Goodspeed L, Wang S, Buckner JH, et al. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice. Journal of lipid research. 2013;54(10):2831-41.

Strack AM, Carballo-Jane E, Wang SP, Xue J, Ping X, McNamara LA, et al. Nicotinic acid and DP1 blockade: studies in mouse models of atherosclerosis. Journal of lipid research. 2013;54(1):177-88.

Sinningen K, Rauner M, Goettsch C, Al-Fakhri N, Schoppet M, Hofbauer LC. Monocytic expression of osteoclast-associated receptor (OSCAR) is induced in atherosclerotic mice and regulated by oxidized low-density lipoprotein in vitro. Biochemical and biophysical research communications. 2013;437(2):314-8.

Saraswathi V, Ramnanan CJ, Wilks AW, Desouza CV, Eller AA, Murali G, et al. Impact of hematopoietic cyclooxygenase-1 deficiency on obesity-linked adipose tissue inflammation and metabolic disorders in mice. Metabolism: clinical and experimental. 2013;62(11):1673-85.

更多References,点击:展开↓

 



有困惑?那就商量呗!


C57小鼠其他疾病模型复制与模型饲料


小帮手
关闭
收藏本网站