返回
专题      专题
返回

目录

动脉粥样硬化模型

C57BL6小鼠

C57小鼠
动脉粥样硬化模型



C57BL/6小鼠
动脉粥样硬化模型造模和造模方法
Model Diet of Atherosclerosis for C57BL6 Mice

C57BL/6小鼠是所有正常小鼠中对动脉粥样硬化相对敏感的品系,从而被广泛用于高脂血症和动脉粥样硬化研究和模型造模。在我国,一般所说的C57也都是指的这个品系,不过,建议你在购买C57时应当确认是否C57BL6。


一、C57小鼠对动脉粥样硬化模型造模的优势和特点


C57小鼠的优势

(1)国内有多个单位提供,购买容易。

(2)喂养的模型饲料成本低。每只小鼠每天饲料消耗量只有几克。

(3)应用C57小鼠复制动脉粥样硬化模型或者从事动脉粥样硬化的研究,其优势是这个品系的小鼠具有代谢综合症的基因倾向,不仅相对容易地形成动脉粥样硬化,而且研究结果容易与其他相关研究文献的研究结果结合起来分析和讨论。

C57小鼠的缺点

(1)C57小鼠与其他小鼠相似:血浆胆固醇在不同脂蛋白中的分布不同于人;

(2)C57小鼠的高脂血症属于高胆固醇血症,一般不能形成高甘油三酯血症。

(3)所形成的动脉粥样硬化只能发展到脂质条纹期,不能形成斑块。

(4)动脉粥样硬化发生部位在主动脉起始部位,与人类不同。损伤部位小,仅有800-1000平方微米左右。

如果这些方面不能满足你的研究需要,应当考虑选择其他动物。

二、C57小鼠动脉粥样硬化模型复制的饲料


由于Paigen等研究者已经对多种品系大鼠进行了动脉粥样硬化模型饲料进行了针对性的研究,所设计的模型饲料已经成为经典和通行的动脉粥样硬化模型饲料,因此,C57是过去和当前最常用的动脉粥样硬化模型饲料。

由于原料不同,Paigen饲料包括日粮型和纯化型两类模型饲料。

此外,目前的研究认为,同型半胱氨酸血症(HHCY)在动脉粥样硬化形成过程中发挥作用。因此,C57小鼠可以用Paigen饲料基础上添加蛋氨酸的模型饲料,这种饲料属于纯化型饲料(为了准确控制蛋氨酸含量)。

总之,C57小鼠动脉粥样硬化研究或者用于模型造模的饲料,包括两种模型饲料:

(1)Paigen日粮型高脂高胆固醇模型饲料

(2)Paigen纯化型高脂高胆固醇模型饲料

点击上述超链接,详细了解模型饲料和选择方法。在上述模型饲料,应当优先选择纯化型。

三、C57小鼠的选择和动脉粥样硬化造模其他注意事项


(1)在研究设计中,应当特别注意C57的性别、年龄,这在动脉粥样硬化造模中非常关键。

(2)由于不同窝的老鼠之间会不和谐,往往因此造成彼此受伤,这可能会引起体内的炎症反应,从而影响研究结果,因此,应当在断奶时不同窝混合喂养,否则,应该单笼喂养。具有举足轻重的斑块部位:在主动脉根部和近段形成小的脂质条纹(不能发展到斑块阶段)。

有不清楚之处以及其他方面的注意事项,请与南通特洛菲饲料科技有限公司技术部联系。

References:

Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, et al. Disturbed Flow Promotes Endothelial Senescence via a p53-Dependent Pathway. Arteriosclerosis, thrombosis, and vascular biology. 2014.

Wanschel AC, Caceres VM, Moretti AI, Bruni-Cardoso A, de Carvalho HF, de Souza HP, et al. Cardioprotective mechanism of S-nitroso-N-acetylcysteine via S-nitrosated betadrenoceptor-2 in the LDLr-/- mice. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society. 2014;36:58-66.

Steiner T, Francescut L, Byrne S, Hughes T, Jayanthi A, Guschina I, et al. Protective role for properdin in progression of experimental murine atherosclerosis. PloS one. 2014;9(3):e92404.

Simsekyilmaz S, Cabrera-Fuentes HA, Meiler S, Kostin S, Baumer Y, Liehn EA, et al. Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation. 2014;129(5):598-606.

Plat J, Theuwissen E, Husche C, Lutjohann D, Gijbels MJ, Jeurissen M, et al. Oxidised plant sterols as well as oxycholesterol increase the proportion of severe atherosclerotic lesions in female LDL receptor+/ - mice. The British journal of nutrition. 2014;111(1):64-70.

Neuhofer A, Wernly B, Leitner L, Sarabi A, Sommer NG, Staffler G, et al. An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovascular diabetology. 2014;13:23.

Meydani M, Kwan P, Band M, Knight A, Guo W, Goutis J, et al. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet. Atherosclerosis. 2014;233(1):196-205.

Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014;232(1):40-51.

Funke A, Schreurs M, Aparicio-Vergara M, Sheedfar F, Gruben N, Kloosterhuis NJ, et al. Cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male LDL receptor knockout mice. Atherosclerosis. 2014;232(2):390-6.

de Haan W, Bhattacharjee A, Ruddle P, Kang MH, Hayden MR. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. Journal of lipid research. 2014;55(3):516-23.

Dai Y, Palade P, Wang X, Mercanti F, Ding Z, Dai D, et al. High fat diet causes renal fibrosis in LDLr-null mice through MAPK-NF-kappaB pathway mediated by Ox-LDL. Journal of cardiovascular pharmacology. 2014;63(2):158-66.

Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A. Programmed Cell Death-1 Deficiency Exacerbates T Cell Activation and Atherogenesis despite Expansion of Regulatory T Cells in Atherosclerosis-Prone Mice. PloS one. 2014;9(4):e93280.

Busch M, Westhofen TC, Koch M, Lutz MB, Zernecke A. Dendritic cell subset distributions in the aorta in healthy and atherosclerotic mice. PloS one. 2014;9(2):e88452.

Al Rajabi A, Castro GS, da Silva RP, Nelson RC, Thiesen A, Vannucchi H, et al. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. The Journal of nutrition. 2014;144(3):252-7.

Zhao J, Zhu H, Wang S, Ma X, Liu X, Wang C, et al. Naoxintong protects against atherosclerosis through lipid-lowering and inhibiting maturation of dendritic cells in LDL receptor knockout mice fed a high-fat diet. Current pharmaceutical design. 2013;19(33):5891-6.

Zhang BC, Li XK, Che WL, Li WM, Hou L, Wei YD, et al. [Peroxisome proliferator-activated receptor alpha/gamma agonist tesaglitazar stabilizes atherosclerotic plaque in diabetic low density lipoprotein receptor knockout mice]. Zhonghua xin xue guan bing za zhi. 2013;41(2):143-9.

Yoshimura Y, Nishii S, Zaima N, Moriyama T, Kawamura Y. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese, diabetic KK-A(y) mice. Biochemical and biophysical research communications. 2013;434(3):486-91.

Xia M, Chen D, Endresz V, Faludi I, Szabo A, Gonczol E, et al. Immunization of Chlamydia pneumoniae (Cpn)-infected Apob(tm2Sgy)Ldlr(tm1Her)/J mice with a combined peptide of Cpn significantly reduces atherosclerotic Wen S, Jadhav KS, Williamson DL, Rideout TC. Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice. Journal of lipids. 2013;2013:908048.

Wang S, Miller B, Matthan NR, Goktas Z, Wu D, Reed DB, et al. Aortic cholesterol accumulation correlates with systemic inflammation but not hepatic and gonadal adipose tissue inflammation in low-density lipoprotein receptor null mice. Nutrition research. 2013;33(12):1072-82.

van Leeuwen M, Kemna MJ, de Winther MP, Boon L, Duijvestijn AM, Henatsch D, et al. Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PloS one. 2013;8(7):e68039.

Subramanian S, Turner MS, Ding Y, Goodspeed L, Wang S, Buckner JH, et al. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice. Journal of lipid research. 2013;54(10):2831-41.

Strack AM, Carballo-Jane E, Wang SP, Xue J, Ping X, McNamara LA, et al. Nicotinic acid and DP1 blockade: studies in mouse models of atherosclerosis. Journal of lipid research. 2013;54(1):177-88.

Sinningen K, Rauner M, Goettsch C, Al-Fakhri N, Schoppet M, Hofbauer LC. Monocytic expression of osteoclast-associated receptor (OSCAR) is induced in atherosclerotic mice and regulated by oxidized low-density lipoprotein in vitro. Biochemical and biophysical research communications. 2013;437(2):314-8.

Saraswathi V, Ramnanan CJ, Wilks AW, Desouza CV, Eller AA, Murali G, et al. Impact of hematopoietic cyclooxygenase-1 deficiency on obesity-linked adipose tissue inflammation and metabolic disorders in mice. Metabolism: clinical and experimental. 2013;62(11):1673-85.

更多References,点击:展开↓

 



有困惑?那就商量呗!


C57小鼠其他疾病模型复制与模型饲料


小帮手
关闭
收藏本网站