返回
专题      专题
返回

目录

动脉粥样硬化模型

C57BL6小鼠

C57小鼠
动脉粥样硬化模型



C57BL/6小鼠
动脉粥样硬化模型造模的高脂高胆固醇模型饲料(日粮型)
High Fat High Cholesterol (HFHC) Chow for Atherosclerosis in C57BL6 Mice

一、C57小鼠动脉粥样硬化模型Paigen饲料(日粮型)


在C57小鼠中建立动脉粥样硬化模型的模型饲料当属Paigen模型饲料。Paigen模型饲料包括日粮型和纯化型。

日粮型Paigen饲料是含有饱和脂肪、胆固醇并添加胆盐的模型饲料,其中,15%脂肪,1.25%胆固醇,0.5%胆盐( 15% fat, 1.25% cholesterol, and 0.5% sodium cholate)。

日粮型Paigen饲料的优势

与纯化型Paigen模型饲料相比,价格相对便宜。

日粮型Paigen饲料的缺点

由于原料是采用普通饲料为主料,而普通饲料的原料中含有影响动物机能的因素,因此,不应当优先选用日粮型Paigen饲料,而应当优先使用纯化型Paigen饲料。

关于日粮型Paigen饲料的详细介绍,请点击阅读我们的专题“Paigen(日粮型)模型饲料介绍和使用注意点”。

日粮型Paigen饲料的配比本身是科学的,但是,我们必需注意这样一个事实:Paigen等研究者在实验室中以普通饲料为基础饲料打碎后添加脂肪、胆固醇和胆酸,发现动脉粥样硬化模型的稳定性和可重复性很差,即,不同批次做成的饲料喂养后的效果不同,有时做成的饲料不能形成动脉粥样硬化,因此后来他们研究出了相应的纯化型模型饲料(点击了解:纯化型Paigen模型饲料)。

那么,他们制作的日粮型模型饲料为什么经常出现造模失败或者研究结果不一致呢?他们是这样分析的:

(1)采用的是动物房的普通饲料。不同时候从动物房获得的普通饲料,距离生产日期不同,营养素含量有差别。

(2)采用的是打碎普通饲料的方法。这种方法带来的问题是,打碎程度不同,打碎过程中某些营养素损失。

(3)添加的脂肪、胆固醇和胆酸不容易混匀。有两个原因,一是混匀设备不具备,二是普通饲料不能被打碎成粉状,而是大小不等的颗粒状。

Paigen等研究者上述日粮型制作的经常失败的体验告诉我们,要想获得稳定可靠的日粮Paigen模型饲料,需要对饲料进行科学的加工制作,才能不重复他们曾经经历的失败。

南通特洛菲饲料科技有限公司采取科学的加工制作方法和工艺所生产的日粮型Paigen饲料的饲料代码是TP28900。

南通特洛菲饲料科技有限公司
日粮型高脂高胆固醇模型饲料

日粮型Paigen饲料

markerTP28900

15%脂肪,1.25%胆固醇,0.5%胆盐。展开↓

LAD0011应当作为正常喂养的对照饲料。

日粮Paigen饲料+蛋氨酸

markerTP25550

15%脂肪,1.25%胆固醇,0.5%胆盐,添加蛋氨酸,展开↓

LAD0011应当作为正常喂养的对照饲料。

日粮Paigen饲料+B12和叶酸缺乏

markerTP25570

15%脂肪,1.25%胆固醇,0.5%胆盐,低叶酸,低B12,展开↓

LAD0011应当作为正常喂养的对照饲料。

他们生产日粮型Paigen饲料的特点是:

[1]从源头开始制作模型饲料,而不是在普通饲料加工成型后再粉碎的基础上添加(脂肪、胆固醇、胆盐,等等);

[2]在加入脂肪、胆固醇、胆盐等原料后,平衡了微量营养素;

[3]模型饲料和对照饲料相匹配,采取同步生产,不采用库存销售,而是定制后立即生产和发货,确保两者之间的一致性和差异性符合科研要求。

此外,他们采用的普通饲料是饲料代码LAD0011的普通饲料,该饲料在动脉粥样硬化模型造模中有以下优势:

[1]LAD0011饲料中植物雌激素很低;

[2]LAD0011饲料中最大程度降低亚硝胺含量。

南通特洛菲饲料科技有限公司采取的以上做法,是提高模型饲料的稳定性和帮助用户减小研究偏倚的重要措施。

请注意】由于TP28900模型饲料是在该公司的LAD0011饲料的原料为基础配制而成,对照饲料应当是LAD0011,而不应当采用其他单位生产的普通饲料,因为原料成分、含量不同。

除了日粮型Pagen饲料,还有多种修饰的模型饲料,包括Paigen模型饲料中蛋氨酸缺乏,B12和叶酸缺乏,这是基于同型半胱氨酸在动脉粥样硬化中发挥作用。南通特洛菲饲料科技有限公司的模型饲料代码分别是TP25550(添加蛋氨酸)TP25570(维生素B12和叶酸缺乏)。

二、C57小鼠动脉粥样硬化模型Paigen饲料(日粮型)购买和使用注意事项


尽管我们在“C57BL6动脉粥样硬化模型饲料和模型建立方法”中对做详细介绍,但是,这里还是要强调以下几个特别注意的方面。

(1)Paigen(日粮型)模型饲料进行动脉粥样硬化模型造模的效果和成功的关键取决于动物的年龄和性别。在实验设计和动物选择时务必加以注意。

(2)Paigen(日粮型)模型饲料喂养后,除了动脉粥样硬化相关改变,还伴随脂肪肝、胆结石等疾病发生,应当考虑这些表现是否对你的研究有影响,或者,应当考虑是否同时观察干预因素对这些方面的效应。

(3)Paigen模型饲料中胆盐对血管、肝脏、胆汁形成等发挥作用,因此,应当考虑这些因素对实验观察指标的干扰。

(4)由于C57小鼠的特点,采用Paigen饲料喂养后血浆甘油三酯不升高,甚至降低。

其他注意事项,请与南通特洛菲饲料科技有限公司技术部联系。

References:

Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, et al. Disturbed Flow Promotes Endothelial Senescence via a p53-Dependent Pathway. Arteriosclerosis, thrombosis, and vascular biology. 2014.

Wanschel AC, Caceres VM, Moretti AI, Bruni-Cardoso A, de Carvalho HF, de Souza HP, et al. Cardioprotective mechanism of S-nitroso-N-acetylcysteine via S-nitrosated betadrenoceptor-2 in the LDLr-/- mice. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society. 2014;36:58-66.

Steiner T, Francescut L, Byrne S, Hughes T, Jayanthi A, Guschina I, et al. Protective role for properdin in progression of experimental murine atherosclerosis. PloS one. 2014;9(3):e92404.

Simsekyilmaz S, Cabrera-Fuentes HA, Meiler S, Kostin S, Baumer Y, Liehn EA, et al. Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation. 2014;129(5):598-606.

Plat J, Theuwissen E, Husche C, Lutjohann D, Gijbels MJ, Jeurissen M, et al. Oxidised plant sterols as well as oxycholesterol increase the proportion of severe atherosclerotic lesions in female LDL receptor+/ - mice. The British journal of nutrition. 2014;111(1):64-70.

Neuhofer A, Wernly B, Leitner L, Sarabi A, Sommer NG, Staffler G, et al. An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovascular diabetology. 2014;13:23.

Meydani M, Kwan P, Band M, Knight A, Guo W, Goutis J, et al. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet. Atherosclerosis. 2014;233(1):196-205.

Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014;232(1):40-51.

Funke A, Schreurs M, Aparicio-Vergara M, Sheedfar F, Gruben N, Kloosterhuis NJ, et al. Cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male LDL receptor knockout mice. Atherosclerosis. 2014;232(2):390-6.

de Haan W, Bhattacharjee A, Ruddle P, Kang MH, Hayden MR. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. Journal of lipid research. 2014;55(3):516-23.

Dai Y, Palade P, Wang X, Mercanti F, Ding Z, Dai D, et al. High fat diet causes renal fibrosis in LDLr-null mice through MAPK-NF-kappaB pathway mediated by Ox-LDL. Journal of cardiovascular pharmacology. 2014;63(2):158-66.

Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A. Programmed Cell Death-1 Deficiency Exacerbates T Cell Activation and Atherogenesis despite Expansion of Regulatory T Cells in Atherosclerosis-Prone Mice. PloS one. 2014;9(4):e93280.

Busch M, Westhofen TC, Koch M, Lutz MB, Zernecke A. Dendritic cell subset distributions in the aorta in healthy and atherosclerotic mice. PloS one. 2014;9(2):e88452.

Al Rajabi A, Castro GS, da Silva RP, Nelson RC, Thiesen A, Vannucchi H, et al. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. The Journal of nutrition. 2014;144(3):252-7.

Zhao J, Zhu H, Wang S, Ma X, Liu X, Wang C, et al. Naoxintong protects against atherosclerosis through lipid-lowering and inhibiting maturation of dendritic cells in LDL receptor knockout mice fed a high-fat diet. Current pharmaceutical design. 2013;19(33):5891-6.

Zhang BC, Li XK, Che WL, Li WM, Hou L, Wei YD, et al. [Peroxisome proliferator-activated receptor alpha/gamma agonist tesaglitazar stabilizes atherosclerotic plaque in diabetic low density lipoprotein receptor knockout mice]. Zhonghua xin xue guan bing za zhi. 2013;41(2):143-9.

Yoshimura Y, Nishii S, Zaima N, Moriyama T, Kawamura Y. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese, diabetic KK-A(y) mice. Biochemical and biophysical research communications. 2013;434(3):486-91.

Xia M, Chen D, Endresz V, Faludi I, Szabo A, Gonczol E, et al. Immunization of Chlamydia pneumoniae (Cpn)-infected Apob(tm2Sgy)Ldlr(tm1Her)/J mice with a combined peptide of Cpn significantly reduces atherosclerotic Wen S, Jadhav KS, Williamson DL, Rideout TC. Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice. Journal of lipids. 2013;2013:908048.

Wang S, Miller B, Matthan NR, Goktas Z, Wu D, Reed DB, et al. Aortic cholesterol accumulation correlates with systemic inflammation but not hepatic and gonadal adipose tissue inflammation in low-density lipoprotein receptor null mice. Nutrition research. 2013;33(12):1072-82.

van Leeuwen M, Kemna MJ, de Winther MP, Boon L, Duijvestijn AM, Henatsch D, et al. Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PloS one. 2013;8(7):e68039.

Subramanian S, Turner MS, Ding Y, Goodspeed L, Wang S, Buckner JH, et al. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice. Journal of lipid research. 2013;54(10):2831-41.

Strack AM, Carballo-Jane E, Wang SP, Xue J, Ping X, McNamara LA, et al. Nicotinic acid and DP1 blockade: studies in mouse models of atherosclerosis. Journal of lipid research. 2013;54(1):177-88.

Sinningen K, Rauner M, Goettsch C, Al-Fakhri N, Schoppet M, Hofbauer LC. Monocytic expression of osteoclast-associated receptor (OSCAR) is induced in atherosclerotic mice and regulated by oxidized low-density lipoprotein in vitro. Biochemical and biophysical research communications. 2013;437(2):314-8.

Saraswathi V, Ramnanan CJ, Wilks AW, Desouza CV, Eller AA, Murali G, et al. Impact of hematopoietic cyclooxygenase-1 deficiency on obesity-linked adipose tissue inflammation and metabolic disorders in mice. Metabolism: clinical and experimental. 2013;62(11):1673-85.

更多References,点击:展开↓

 



有困惑?那就商量呗!


C57小鼠其他疾病模型复制与模型饲料


小帮手
关闭
收藏本网站