返回
专题      专题
返回

目录

动脉粥样硬化模型

LDL knockout小鼠(LDLR-deificient mouse)

LDL受体基因小鼠

动脉粥样硬化造模和模型饲料



LDL受体基因敲除(LDLR-/-)小鼠
动脉粥样硬化造模和模型饲料要求
Model Diet of Atherosclerosis for LDLR-/- Mice


LDL受体(low density lipoprotein receptor, LDLR)敲除小鼠是目前在动脉粥样硬化(AS)研究领域中应用最多的基因工程动物之一。该小鼠对脂肪和胆固醇都非常敏感,因此,要根据研究目的选择相应的模型饲料和造模。

除非实验有特殊要求,应当选用基于C57BL/6小鼠为母本(野型)敲除LDLR的小鼠。

一、LDLR敲除小鼠动脉粥样硬化的特点


1.LDLR敲除小鼠动脉粥样硬化动物模型的优势

(1)研究LDLR在动脉粥样硬化发生中的表现和作用;

(2)与ApoE基因缺陷小鼠相比,LDLR-/-小鼠脂蛋白谱更近似于人类,有利于将脂蛋白改变与人类动脉粥样硬化与高脂血症的关系进行推演;有助于观察药物或者食品功能因子干预后分析脂蛋白改变的临床意义。

(3)在喂养普通饲料时不会自发地发生或者发生非常轻微的动脉粥样硬化。这有利于模型饲料组与正常组之间的可比性更强。

(4)血浆胆固醇对饲料中胆固醇很敏感,可通过改变饲料中胆固醇含量控制血浆胆固醇水平,使病变更接近人类病变。

(5)动脉粥样硬化可以发展到纤维化斑块或者纤维帽阶段,因此,可以模拟人类动脉粥样硬化的所有阶段。

2.LDLR敲除小鼠动脉粥样硬化动物模型的缺点

(1)要形成动脉粥样硬化高级阶段,需要喂养的时间较长。

(2)伴有脂肪肝等异常。

(3)与其他所有基因工程动物相同:都是非正常动物,研究结果难以推演到人类疾病以及药物或者食品功能因子对人类动脉粥样硬化的效果。

二、LDLR敲除小鼠动脉粥样硬化造模对饲料的要求和选择方法


(1)日常喂养的饲料要求很高

虽然LDLR敲除小鼠没有ApoE敲除小鼠那样容易自发性动脉粥样硬化,但是,如果日常喂养的普通饲料含有胆固醇和饱和脂肪较多,可以引起自发性高胆固醇血症和动脉粥样硬化。因此,一般的大鼠或小鼠的普通不宜采用。

建议采用南通特洛菲饲料科技有限公司有限公司生产的特别适用于脂蛋白代谢及相关基因的基因工程小鼠的普通喂养饲料,详细了解请点击:LAD0011介绍

(2)模型饲料中胆固醇水平要适度

由于对饲料胆固醇非常敏感,血液胆固醇浓度与饲料胆固醇含量成比例升高,如果模型饲料中采用胆固醇较高,可能发生严重的高胆固醇血症,引起胆固醇毒性,不仅增加动物死亡率,而且不符合人类的动脉粥样硬化的血脂情形。

(3)脂肪含量的确定和控制

LDLR敲除小鼠对脂肪含量敏感,对脂肪类型或不同脂肪酸比例的构成也非常敏感。在使用高胆固醇饲料时脂肪含量和脂肪类型应当科学地确定。在选择高脂高胆固醇饲料时,要对脂肪含量和脂肪类型进行谨慎地选择。

(4)除非研究中有特殊要求,模型饲料不应当添加胆盐

胆盐添加可导致伴有炎症的动脉粥样硬化,除非研究特别需要,例如,观察药物对动脉粥样硬化的干预作用,或者研究胆盐的作用,模型饲料不应当选择添加胆盐。

References:

Matthijsen RA, de Winther MP, Kuipers D, van der Made I, Weber C, Herias MV, et al. Macrophage-specific expression of mannose-binding lectin controls atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2009;119(16):2188-95.

Luo Y, Warren L, Xia D, Jensen H, Sand T, Petras S, et al. Function and distribution of circulating human PCSK9 expressed extrahepatically in transgenic mice. Journal of lipid research. 2009;50(8):1581-8.

Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2009;120(5):417-26.

Leung VW, Yun S, Botto M, Mason JC, Malik TH, Song W, et al. Decay-accelerating factor suppresses complement C3 activation and retards atherosclerosis in low-density lipoprotein receptor-deficient mice. The American journal of pathology. 2009;175(4):1757-67.

Kong B, Luyendyk JP, Tawfik O, Guo GL. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. The Journal of pharmacology and experimental therapeutics. 2009;328(1):116-22.

Kim GH, Park K, Yeom SY, Lee KJ, Kim G, Ko J, et al. Characterization of ASC-2 as an antiatherogenic transcriptional coactivator of liver X receptors in macrophages. Molecular endocrinology. 2009;23(7):966-74.

Kellokoski E, Kummu O, Serpi R, Lehenkari P, Ukkola O, Kesaniemi YA, et al. Ghrelin vaccination decreases plasma MCP-1 level in LDLR(-/-)-mice. Peptides. 2009;30(12):2292-300.

Guo W, Wong S, Pudney J, Jasuja R, Hua N, Jiang L, et al. Acipimox, an inhibitor of lipolysis, attenuates atherogenesis in LDLR-null mice treated with HIV protease inhibitor ritonavir. Arteriosclerosis, thrombosis, and vascular biology. 2009;29(12):2028-32.

Guo H, Shi Y, Liu L, Sun A, Xu F, Chi J. Rosuvastatin inhibits MMP-2 expression and limits the progression of atherosclerosis in LDLR-deficient mice. Archives of medical research. 2009;40(5):345-51.

Franco C, Britto K, Wong E, Hou G, Zhu SN, Chen M, et al. Discoidin domain receptor 1 on bone marrow-derived cells promotes macrophage accumulation during atherogenesis. Circulation research. 2009;105(11):1141-8.

de Nooijer R, Bot I, von der Thusen JH, Leeuwenburgh MA, Overkleeft HS, Kraaijeveld AO, et al. Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2009;29(2):188-94.

Collins AR, Lyon CJ, Xia X, Liu JZ, Tangirala RK, Yin F, et al. Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes. Circulation research. 2009;104(6):e42-54.

Coenen KR, Gruen ML, Lee-Young RS, Puglisi MJ, Wasserman DH, Hasty AH. Impact of macrophage toll-like receptor 4 deficiency on macrophage infiltration into adipose tissue and the artery wall in mice. Diabetologia. 2009;52(2):318-28.

Bhasin KK, van Nas A, Martin LJ, Davis RC, Devaskar SU, Lusis AJ. Maternal low-protein diet or hypercholesterolemia reduces circulating essential amino acids and leads to intrauterine growth restriction. Diabetes. 2009;58(3):559-66.

Ayada K, Yokota K, Hirai K, Fujimoto K, Kobayashi K, Ogawa H, et al. Regulation of cellular immunity prevents Helicobacter pylori-induced atherosclerosis. Lupus. 2009;18(13):1154-68. Zhou X, He W, Huang Z, Gotto AM, Jr., Hajjar DP, Han J. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism. The Journal of biological chemistry. 2008;283(4):2129-38.

Zhang JR, Coleman T, Langmade SJ, Scherrer DE, Lane L, Lanier MH, et al. Niemann-Pick C1 protects against atherosclerosis in mice via regulation of macrophage intracellular cholesterol trafficking. The Journal of clinical investigation. 2008;118(6):2281-90.

Yun S, Leung VW, Botto M, Boyle JJ, Haskard DO. Brief report: accelerated atherosclerosis in low-density lipoprotein receptor-deficient mice lacking the membrane-bound complement regulator CD59. Arteriosclerosis, thrombosis, and vascular biology. 2008;28(10):1714-6.

Xu B, Wang C, Yang J, Mao G, Zhang C, Liu D, et al. Silencing of mouse hepatic lanosterol 14-alpha demethylase down-regulated plasma low-density lipoprotein cholesterol levels by short-term treatment of siRNA. Biological & pharmaceutical bulletin. 2008;31(6):1182-91.

Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H, Lutjohann D, et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology. 2008;48(2):474-86.

Wang M, Lee E, Song W, Ricciotti E, Rader DJ, Lawson JA, et al. Microsomal prostaglandin E synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. Circulation. 2008;117(10):1302-9.

vvan Leeuwen M, Gijbels MJ, Duijvestijn A, Smook M, van de Gaar MJ, Heeringa P, et al. Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR-/- mice. Arteriosclerosis, thrombosis, and vascular biology. 2008;28(1):84-9.

Valenta DT, Bulgrien JJ, Bonnet DJ, Curtiss LK. Macrophage PLTP is atheroprotective in LDLr-deficient mice with systemic PLTP deficiency. Journal of lipid research. 2008;49(1):24-32.

Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, et al. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. Journal of neurochemistry. 2008;106(1):475-85.

Ketonen J, Mervaala E. Effects of dietary sodium on reactive oxygen species formation and endothelial dysfunction in low-density lipoprotein receptor-deficient mice on high-fat diet. Heart and vessels. 2008;23(6):420-9.

Jacobs F, Van Craeyveld E, Feng Y, Snoeys J, De Geest B. Adenoviral low density lipoprotein receptor attenuates progression of atherosclerosis and decreases tissue cholesterol levels in a murine model of familial hypercholesterolemia. Atherosclerosis. 2008;201(2):289-97.

Huang Z, Zhou X, Nicholson AC, otto AM, Jr., Hajjar DP, Han J. Activation of peroxisome proliferator-activated receptor-alpha in mice induces expression of the hepatic low-density lipoprotein receptor. British journal of pharmacology. 2008;155(4):596-605.

Hime NJ, Black AS, Bulgrien JJ, Curtiss LK. Leukocyte-derived hepatic lipase increases HDL and decreases en face aortic atherosclerosis in LDLr-/- mice expressing CETP. Journal of lipid research. 2008;49(10):2113-23.

Ellis A, Cheng ZJ, Li Y, Jiang YF, Yang J, Pannirselvam M, et al. Effects of a Western diet versus high glucose on endothelium-dependent relaxation in murine micro- and macro-vasculature. European journal of pharmacology. 2008;601(1-3):111-7.

Braun N, Wade NS, Wakeland EK, Major AS. Accelerated atherosclerosis is independent of feeding high fat diet in systemic lupus erythematosus-susceptible LDLr(-/-) mice. Lupus. 2008;17(12):1070-8.

Ait-Oufella H, Pouresmail V, Simon T, Blanc-Brude O, Kinugawa K, Merval R, et al. Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2008;28(8):1429-31.

Zhao B, Song J, Chow WN, St Clair RW, Rudel LL, Ghosh S. Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. The Journal of clinical investigation. 2007;117(10):2983-92.

Xu Y, Arai H, Murayama T, Kita T, Yokode M. Hypercholesterolemia contributes to the development of atherosclerosis and vascular remodeling by recruiting bone marrow-derived cells in cuff-induced vascular injury. Biochemical and biophysical research communications. 2007;363(3):782-7.

Schiopu A, Frendeus B, Jansson B, Soderberg I, Ljungcrantz I, Araya Z, et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in apobec-1(-/-)/low-density lipoprotein receptor(-/-) mice. Journal of the American College of Cardiology. 2007;50(24):2313-8.

Saraswathi V, Gao L, Morrow JD, Chait A, Niswender KD, Hasty AH. Fish oil increases cholesterol storage in white adipose tissue with concomitant decreases in inflammation, hepatic steatosis, and atherosclerosis in mice. The Journal of nutrition. 2007;137(7):1776-82.

Recinos A, 3rd, LeJeune WS, Sun H, Lee CY, Tieu BC, Lu M, et al. Angiotensin II induces IL-6 expression and the Jak-STAT3 pathway in aortic adventitia of LDL receptor-deficient mice. Atherosclerosis. 2007;194(1):125-33.

Qian K, Agrawal N, Dichek HL. Reduced atherosclerosis in chow-fed mice expressing high levels of a catalytically inactive human hepatic lipase. Atherosclerosis. 2007;195(1):66-74.

Pennings M, Hildebrand RB, Ye D, Kunne C, Van Berkel TJ, Groen AK, et al. Bone marrow-derived multidrug resistance protein ABCB4 protects against atherosclerotic lesion development in LDL receptor knockout mice. Cardiovascular research. 2007;76(1):175-83.

Pellizzon MA, Billheimer JT, Bloedon LT, Szapary PO, Rader DJ. Flaxseed reduces plasma cholesterol levels in hypercholesterolemic mouse models. Journal of the American College of Nutrition. 2007;26(1):66-75.

Nuotio-Antar AM, Hachey DL, Hasty AH. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. American journal of physiology Endocrinology and metabolism. 2007;293(6):E1517-28.

Heinonen SE, Leppanen P, Kholova I, Lumivuori H, Hakkinen SK, Bosch F, et al. Increased atherosclerotic lesion calcification in a novel mouse model combining insulin resistance, hyperglycemia, and hypercholesterolemia. Circulation research. 2007;101(10):1058-67.

Hasty AH, Gruen ML, Terry ES, Surmi BK, Atkinson RD, Gao L, et al. Effects of vitamin E on oxidative stress and atherosclerosis in an obese hyperlipidemic mouse model. The Journal of nutritional biochemistry. 2007;18(2):127-33.

Desai U, Lee EC, Chung K, Gao C, Gay J, Key B, et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(28):11766-71.

Cyrus T, Yao Y, Ding T, Dogne JM, Pratico D. Thromboxane receptor blockade improves the antiatherogenic effect of thromboxane A2 suppression in LDLR KO mice. Blood. 2007;109(8):3291-6.

Coenen KR, Hasty AH. Obesity potentiates development of fatty liver and insulin resistance, but not atherosclerosis, in high-fat diet-fed agouti LDLR-deficient mice. American journal of physiology Endocrinology and metabolism. 2007;293(2):E492-9.

Babaev VR, Ishiguro H, Ding L, Yancey PG, Dove DE, Kovacs WJ, et al. Macrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2007;116(12):1404-12.

WWu L, Vikramadithyan R, Yu S, Pau C, Hu Y, Goldberg IJ, et al. Addition of dietary fat to cholesterol in the diets of LDL receptor knockout mice: effects on plasma insulin, lipoproteins, and atherosclerosis. Journal of lipid research. 2006;47(10):2215-22.

Valenta DT, Ogier N, Bradshaw G, Black AS, Bonnet DJ, Lagrost L, et al. Atheroprotective potential of macrophage-derived phospholipid transfer protein in low-density lipoprotein receptor-deficient mice is overcome by apolipoprotein AI overexpression. Arteriosclerosis, thrombosis, and vascular biology. 2006;26(7):1572-8.

Valenta DT, Bulgrien JJ, Banka CL, Curtiss LK. Overexpression of human ApoAI transgene provides long-term atheroprotection in LDL receptor-deficient mice. Atherosclerosis. 2006;189(2):255-63.

Towler DA, Shao JS, Cheng SL, Pingsterhaus JM, Loewy AP. Osteogenic regulation of vascular calcification. Annals of the New York Academy of Sciences. 2006;1068:327-33.

Tian J, Pei H, Sanders JM, Angle JF, Sarembock IJ, Matsumoto AH, et al. Hyperlipidemia is a major determinant of neointimal formation in LDL receptor-deficient mice. Biochemical and biophysical research communications. 2006;345(3):1004-9.

Srivastava RA, Jahagirdar R, Azhar S, Sharma S, Bisgaier CL. Peroxisome proliferator-activated receptor-alpha selective ligand reduces adiposity, improves insulin sensitivity and inhibits atherosclerosis in LDL receptor-deficient mice. Molecular and cellular biochemistry. 2006;285(1-2):35-50.

Raikwar NS, Cho WK, Bowen RF, Deeg MA. Glycosylphosphatidylinositol-specific phospholipase D influences triglyceride-rich lipoprotein metabolism. American journal of physiology Endocrinology and metabolism. 2006;290(3):E463-70.

Potteaux S, Combadiere C, Esposito B, Lecureuil C, Ait-Oufella H, Merval R, et al. Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arteriosclerosis, thrombosis, and vascular biology. 2006;26(8):1858-63.

Out R, Hoekstra M, Hildebrand RB, ruit JK, Meurs I, Li Z, et al. Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice. Arteriosclerosis, thrombosis, and vascular biology. 2006;26(10):2295-300.

Ijiri Y, Naemura A, Yamashita T, Meguro S, Watanabe H, Tokimitsu I, et al. Dietary diacylglycerol extenuates arterial thrombosis in apoE and LDLR deficient mice. Thrombosis research. 2006;117(4):411-7.

Huang C, Zhang Y, Gong Z, Sheng X, Li Z, Zhang W, et al. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway. Biochemical and biophysical research communications. 2006;348(2):571-8.

He L, Game BA, Nareika A, Garvey WT, Huang Y. Administration of pioglitazone in low-density lipoprotein receptor-deficient mice inhibits lesion progression and matrix metalloproteinase expression in advanced atherosclerotic plaques. Journal of cardiovascular pharmacology. 2006;48(5):212-22.

Drolet MC, Roussel E, Deshaies Y, Couet J, Arsenault M. A high fat/high carbohydrate diet induces aortic valve disease in C57BL/6J mice. Journal of the American College of Cardiology. 2006;47(4):850-5.

Cyrus T, Yao Y, Tung LX, Pratico D. Stabilization of advanced atherosclerosis in low-density lipoprotein receptor-deficient mice by aspirin. Atherosclerosis. 2006;184(1):8-14.

Basso F, Amar MJ, Wagner EM, Vaisman B, Paigen B, Santamarina-Fojo S, et al. Enhanced ABCG1 expression increases atherosclerosis in LDLr-KO mice on a western diet. Biochemical and biophysical research communications. 2006;351(2):398-404.

Baldan A, Pei L, Lee R, Tarr P, Tangirala RK, Weinstein MM, et al. Impaired development of atherosclerosis in hyperlipidemic Ldlr-/- and ApoE-/- mice transplanted with Abcg1-/- bone marrow. Arteriosclerosis, thrombosis, and vascular biology. 2006;26(10):2301-7.

Asakura L, Cazita PM, Harada LM, Nunes VS, Berti JA, Salerno AG, et al. Soy protein containing isoflavones favorably influences macrophage lipoprotein metabolism but not the development of atherosclerosis in CETP transgenic mice. Lipids. 2006;41(7):655-62.

Thorbjornsdottir P, Kolka R, Gunnarsson E, Bambir SH, Thorgeirsson G, Kotwal GJ, et al. Vaccinia virus complement control protein diminishes formation of atherosclerotic lesions: complement is centrally involved in atherosclerotic disease. Annals of the New York Academy of Sciences. 2005;1056:1-15.

Steioff K, Rutten H, Busch AE, Plettenburg O, Ivashchenko Y, Lohn M. Long term Rho-kinase inhibition ameliorates endothelial dysfunction in LDL-Receptor deficient mice. European journal of pharmacology. 2005;512(2-3):247-9.

Seidelmann SB, De Luca C, Leibel RL, Breslow JL, Tall AR, Welch CL. Quantitative trait locus mapping of genetic modifiers of metabolic syndrome and atherosclerosis in low-density lipoprotein receptor-deficient mice: identification of a locus for metabolic syndrome and increased atherosclerosis on chromosome 4. Arteriosclerosis, thrombosis, and vascular biology. 2005;25(1):204-10.

Espirito Santo SM, Rensen PC, Goudriaan JR, Bensadoun A, Bovenschen N, Voshol PJ, et al. Triglyceride-rich lipoprotein metabolism in unique VLDL receptor, LDL receptor, and LRP triple-deficient mice. Journal of lipid research. 2005;46(6):1097-102.

Ding T, Yao Y, Pratico D. Increase in peripheral oxidative stress during hypercholesterolemia is not reflected in the central nervous system: evidence from two mouse models. Neurochemistry international. 2005;46(6):435-9.

Crooke RM, Graham MJ, Lemonidis KM, Whipple CP, Koo S, Perera RJ. An apolipoprotein B antisense oligonucleotide lowers LDL cholesterol in hyperlipidemic mice without causing hepatic steatosis. Journal of lipid research. 2005;46(5):872-84.

Yoshimatsu M, Terasaki Y, Sakashita N, Kiyota E, Sato H, van der Laan LJ, et al. Induction of macrophage scavenger receptor MARCO in nonalcoholic steatohepatitis indicates possible involvement of endotoxin in its pathogenic process. International journal of experimental pathology. 2004;85(6):335-43.

Wilund KR, Yu L, Xu F, Hobbs HH, Cohen JC. High-level expression of ABCG5 and ABCG8 attenuates diet-induced hypercholesterolemia and atherosclerosis in Ldlr-/- mice. Journal of lipid research. 2004;45(8):1429-36.

Tintut Y, Morony S, Demer LL. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(2):e6-10.

Recinos A, 3rd, Carr BK, Bartos DB, Boldogh I, Carmical JR, Belalcazar LM, et al. Liver gene expression associated with diet and lesion development in atherosclerosis-prone mice: induction of components of alternative complement pathway. Physiological genomics. 2004;19(1):131-42.

Potteaux S, Esposito B, van Oostrom O, Brun V, Ardouin P, Groux H, et al. Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(8):1474-8.

Niwa T, Wada H, Ohashi H, Iwamoto N, Ohta H, Kirii H, et al. Interferon-gamma produced by bone marrow-derived cells attenuates atherosclerotic lesion formation in LDLR-deficient mice. Journal of atherosclerosis and thrombosis. 2004;11(2):79-87.

Lewis KE, Kirk EA, McDonald TO, Wang S, Wight TN, O'Brien KD, et al. Increase in serum amyloid a evoked by dietary cholesterol is associated with increased atherosclerosis in mice. Circulation. 2004;110(5):540-5.

Kim J, Nam KH, Kim SO, Choi JH, Kim HC, Yang SD, et al. KR-31378 ameliorates atherosclerosis by blocking monocyte recruitment in hypercholestrolemic mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2004;18(6):714-6.

Kanters E, Gijbels MJ, van der Made I, Vergouwe MN, Heeringa P, Kraal G, et al. Hematopoietic NF-kappaB1 deficiency results in small atherosclerotic lesions with an inflammatory phenotype. Blood. 2004;103(3):934-40.

Jeong S, Kim M, Han M, Lee H, Ahn J, Kim M, et al. Fenofibrate prevents obesity and hypertriglyceridemia in low-density lipoprotein receptor-null mice. Metabolism: clinical and experimental. 2004;53(5):607-13.

Fukao H, Ijiri Y, Miura M, Hashimoto M, Yamashita T, Fukunaga C, et al. Effect of trans-resveratrol on the thrombogenicity and atherogenicity in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis. 2004;15(6):441-6.

Dichek HL, Qian K, Agrawal N. Divergent effects of the catalytic and bridging functions of hepatic lipase on atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(9):1696-702.

Yoon M, Jeong S, Lee H, Han M, Kang JH, Kim EY, et al. Fenofibrate improves lipid metabolism and obesity in ovariectomized LDL receptor-null mice. Biochemical and biophysical research communications. 2003;302(1):29-34.

Wu JH, Peppel K, Nelson CD, Lin FT, Kohout TA, Miller WE, et al. The adaptor protein beta-arrestin2 enhances endocytosis of the low density lipoprotein receptor. The Journal of biological chemistry. 2003;278(45):44238-45.

Weng S, Zemany L, Standley KN, Novack DV, La Regina M, Bernal-Mizrachi C, et al. Beta3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(11):6730-5.

Schreyer SA, Lystig TC, Vick CM, LeBoeuf RC. Mice deficient in apolipoprotein E but not LDL receptors are resistant to accelerated atherosclerosis associated with obesity. Atherosclerosis. 2003;171(1):49-55.

Mallat Z, Gojova A, Sauzeau V, Brun V, Silvestre JS, Esposito B, et al. Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circulation research. 2003;93(9):884-8.

Lieu HD, Withycombe SK, Walker Q, Rong JX, Walzem RL, Wong JS, et al. Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation. 2003;107(9):1315-21.

Dutta R, Singh U, Li TB, Fornage M, Teng BB. Hepatic gene expression profiling reveals perturbed calcium signaling in a mouse model lacking both LDL receptor and Apobec1 genes. Atherosclerosis. 2003;169(1):51-62. Deeg MA. Dietary cholate is required for antiatherogenic effects of ethanol in mouse models. Alcoholism, clinical and experimental research. 2003;27(9):1499-506.

Cyrus T, Yao Y, Rokach J, Tang LX, Pratico D. Vitamin E reduces progression of atherosclerosis in low-density lipoprotein receptor-deficient mice with established vascular lesions. Circulation. 2003;107(4):521-3.

Schreyer SA, Vick C, Lystig TC, Mystkowski P, LeBoeuf RC. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. American journal of physiology Endocrinology and metabolism. 2002;282(1):E207-14.

Schiller NK, Boisvert WA, Curtiss LK. Inflammation in atherosclerosis: lesion formation in LDL receptor-deficient mice with perforin and Lyst(beige) mutations. Arteriosclerosis, thrombosis, and vascular biology. 2002;22(8):1341-6.

Hockings PD, Roberts T, Galloway GJ, Reid DG, Harris DA, Vidgeon-Hart M, et al. Repeated three-dimensional magnetic resonance imaging of atherosclerosis development in innominate arteries of low-density lipoprotein receptor-knockout mice. Circulation. 2002;106(13):1716-21.

Devlin CM, Kuriakose G, Hirsch E, Tabas I. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(9):6280-5.

Aiello RJ, Bourassa PA, Lindsey S, Weng W, Freeman A, Showell HJ. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arteriosclerosis, thrombosis, and vascular biology. 2002;22(3):443-9.

Schiller NK, Kubo N, Boisvert WA, Curtiss LK. Effect of gamma-irradiation and bone marrow transplantation on atherosclerosis in LDL receptor-deficient mice. Arteriosclerosis, thrombosis, and vascular biology. 2001;21(10):1674-80.

Laurila A, Cole SP, Merat S, Obonyo M, Palinski W, Fierer J, et al. High-fat, high-cholesterol diet increases the incidence of gastritis in LDL receptor-negative mice. Arteriosclerosis, thrombosis, and vascular biology. 2001;21(6):991-6.

Dichek HL, Johnson SM, Akeefe H, Lo GT, Sage E, Yap CE, et al. Hepatic lipase overexpression lowers remnant and LDL levels by a noncatalytic mechanism in LDL receptor-deficient mice. Journal of lipid research. 2001;42(2):201-10.

Cyrus T, Tang LX, Rokach J, FitzGerald GA, Pratico D. Lipid peroxidation and platelet activation in murine atherosclerosis. Circulation. 2001;104(16):1940-5.

Tsimikas S, Shortal BP, Witztum JL, Palinski W. In vivo uptake of radiolabeled MDA2, an oxidation-specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arteriosclerosis, thrombosis, and vascular biology. 2000;20(3):689-97.

Tacken PJ, Teusink B, Jong MC, Harats D, Havekes LM, van Dijk KW, et al. LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. Journal of lipid research. 2000;41(12):2055-62.

Pratico D, Cyrus T, Li H, FitzGerald GA. Endogenous biosynthesis of thromboxane and prostacyclin in 2 distinct murine models of atherosclerosis. Blood. 2000;96(12):3823-6.

Merat S, Fruebis J, Sutphin M, Silvestre M, Reaven PD. Effect of aging on aortic expression of the vascular cell adhesion molecule-1 and atherosclerosis in murine models of atherosclerosis. The journals of gerontology Series A, Biological sciences and medical sciences. 2000;55(2):B85-94.

Prescott MF, Sawyer WK, Von Linden-Reed J, Jeune M, Chou M, Caplan SL, et al. Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP-3, MMP-12, and MMP-13 and on restenosis in rats after balloon injury. Annals of the New York Academy of Sciences. 1999;878:179-90.

Merat S, Casanada F, Sutphin M, Palinski W, Reaven PD. Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet. Arteriosclerosis, thrombosis, and vascular biology. 1999;19(5):1223-30.

Marsh MM, Walker VR, Curtiss LK, Banka CL. Protection against atherosclerosis by estrogen is independent of plasma cholesterol levels in LDL receptor-deficient mice. Journal of lipid research. 1999;40(5):893-900.

Lichtman AH, Clinton SK, Iiyama K, Connelly PW, Libby P, Cybulsky MI. Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arteriosclerosis, thrombosis, and vascular biology. 1999;19(8):1938-44.

Towler DA, Bidder M, Latifi T, Coleman T, Semenkovich CF. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. The Journal of biological chemistry. 1998;273(46):30427-34.

Sakaguchi H, Takeya M, Suzuki H, Hakamata H, Kodama T, Horiuchi S, et al. Role of macrophage scavenger receptors in diet-induced atherosclerosis in mice. Laboratory investigation; a journal of technical methods and pathology. 1998;78(4):423-34.

Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. The Journal of nutrition. 1998;128(6):954-9.

Crawford RS, Kirk EA, Rosenfeld ME, eBoeuf RC, Chait A. Dietary antioxidants inhibit development of fatty streak lesions in the LDL receptor-deficient mouse. Arteriosclerosis, thrombosis, and vascular biology. 1998;18(9):1506-13.

Dai J, Miller BA, Lin RC. Alcohol feeding impedes early atherosclerosis in low-density lipoprotein receptor knockout mice: factors in addition to high-density lipoprotein-apolipoprotein A1 are involved. Alcoholism, clinical and experimental research. 1997;21(1):11-8.

Sinnis P, Willnow TE, Briones MR, Herz J, Nussenzweig V. Remnant lipoproteins inhibit malaria sporozoite invasion of hepatocytes. The Journal of experimental medicine. 1996;184(3):945-54.

Mortimer BC, Beveridge DJ, Martins IJ, Redgrave TG. Intracellular localization and metabolism of chylomicron remnants in the livers of low density lipoprotein receptor-deficient mice and apoE-deficient mice. Evidence for slow metabolism via an alternative apoE-dependent pathway. The Journal of biological chemistry. 1995;270(48):28767-76.

Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. The Journal of clinical investigation. 1994;93(5):1885-93.

Rudling M. Hepatic mRNA levels for the LDL receptor and HMG-CoA reductase show coordinate regulation in vivo. Journal of lipid research. 1992;33(4):493-501.



有困惑?那就商量呗!


LDLR基因敲除小鼠其他疾病模型复制与模型饲料

小帮手
关闭
收藏本网站