返回
专题      专题
返回

目录

动脉粥样硬化模型

LDL knockout小鼠(LDLR-deificient mouse)

LDL受体基因小鼠

动脉粥样硬化造模和模型饲料



LDL受体基因敲除(LDLR-/-)小鼠
动脉粥样硬化模型高胆固醇模型饲料
High Cholesterol Model Diet of Atherosclerosis for LDL Receptor-deficient(LDLR-KO) Mice

原理

LDLR敲除后的(LDLR-/-)小鼠,对饲料中的胆固醇非常敏感,因此,只需要在饲料中添加胆固醇,就可以建立动脉粥样硬化模型。但是,对模型饲料中胆固醇的要求很高。

 

一、LDLR基因敲除小鼠高胆固醇模型的要求


研究已经发现,LDLR敲除小鼠对饲料的胆固醇极度敏感,即便含有0.02%胆固醇,也能发生动脉粥样硬化。随着饲料中胆固醇含量升高,血浆胆固醇和动脉粥样硬化发生发展的程度相应增大,几乎成正比。因此,要建立动脉粥样硬化模型非常容易,但是,要让研究结果具有良好的可重复性就成为关键。比如,由于胆固醇原料不可靠,或者,胆固醇添加量不准确,其结果是既可能让自己的实验无法重复自己上次的研究结果,也可能使得别人无法重复自己的研究结果。

此外,LDLR基因敲除小鼠对饲料中脂肪类型也非常敏感。既然是高胆固醇饲料,这就需要控制饲料的脂肪含量,并且使用合适的脂肪类型。

因此,购买可靠的高脂肪饲料成为研究的关键点。

二、南通特洛菲饲料科技有限公司高胆固醇饲料介绍


南通特洛菲饲料科技有限公司提供的适用于LDLR-/-小鼠的高胆固醇模型饲料,包括两种类型:日粮型高胆固醇模型饲料和纯化型高胆固醇模型饲料。注意:纯化型饲优于日粮型饲料。

1.适用于LDLR敲除小鼠的纯化型高胆固醇模型饲料

适用于LDLR敲除小鼠的纯化型高胆固醇模型饲料见下表。

特洛菲饲料科技有限公司
LDLR基因敲除或沉默的小鼠高胆固醇模型饲料

纯化型

以下模型饲料是以纯化原料进行配制,属于低高胆固醇模型饲料。

产品代码    对照饲料

TP 0600:0%胆固醇对照饲料

TP 0601:0%胆固醇对照饲料

TP 0602:0%胆固醇对照饲料

产品代码    模型饲料名称

TP 0610:0.15%胆固醇模型饲料

TP 0611:0.2%胆固醇模型饲料

TP 0612:0.3%胆固醇模型饲料

TP 0613:0.5%胆固醇模型饲料

TP 0614:1.0%胆固醇模型饲料

TP 0615:1.25%胆固醇模型饲料

TP 0616:1.5%胆固醇模型饲料

TP 0617:2.0%胆固醇模型饲料

如果需要其他水平胆固醇,请提出!

在选择模型饲料时,请注意对照饲料应当是配套的TP 0600(脂肪类型与模型饲料匹配)、TP 0601(豆油)、TP 0601(低糖型)中的一种,而不宜采用普通喂养的饲料。了解其原因请点击阅读:“使用高脂饲料的SCI论文中对照饲料不科学的问题”)。

特别要注意的是,LDLR敲除小鼠纯化型高胆固醇模型饲料的对照饲料不应当采用标准AIN93或AIN76纯化型饲料。要了解其原因,请与南通特洛菲饲料科技有限公司技术部咨询。

2.适用于LDLR敲除小鼠的日粮型高胆固醇模型饲料

日粮型高胆固醇饲料成本相对较低,价格相对便宜。虽然南通特洛菲饲料科技有限公司采用了科学工艺提高了胆固醇添加的准确性和均匀度,但是,由于原料的特点,在胆固醇添加的准确方面没有纯化型模型饲料中添加的准确高,因此,应当优先考虑纯化型。

特洛菲饲料科技有限公司
LDLR基因敲除或沉默的小鼠高胆固醇模型饲料

日粮型

以下模型饲料是在本公司TP LAD0011(低脂)生产过程中添加胆固醇.其正常对照饲料应当选用LAD 0011。

产品代码    对照饲料名称

LAD 0011:0%胆固醇

产品代码    模型饲料名称

TP 0500:0.15%胆固醇模型饲料

TP 0501:0.2%胆固醇模型饲料

TP 0502:0.3%胆固醇模型饲料

TP 0503:0.5%胆固醇模型饲料

TP 0504:1.0%胆固醇模型饲料

TP 0505:1.25%胆固醇模型饲料

TP 0506:1.5%胆固醇模型饲料

TP 0507:2.0%胆固醇模型饲料

如果需要其他水平胆固醇,请提出! 

请注意,采用日粮型模型饲料时,对照饲料应当采用LAD0011普通饲料,LAD0011是专为基因工程鼠设计的普通喂养饲料。关于特洛菲饲料科技有限公司生产的LAD0011普通饲料,请点击:LAD0011介绍:脂蛋白代谢及其相关的基因工程大鼠和小鼠的日常喂养饲料

三、LDLR敲除小鼠高胆固醇模型饲料使用和动脉粥样硬化造模注意事项


1.LDLRKO小鼠高胆固醇模型饲料诱导的动脉粥样硬化的特点

(1)头臂动脉(Brachiocephalic artery)的动脉粥样硬化程度大于主动脉。

因此,在分析动脉粥样硬化程度和定量时,要注意头臂动脉的取材和观察。

(2)雌雄性别差别

对照饲料喂养的小鼠在头臂动脉和主动脉起始部有动脉粥样硬化表现,雌性小鼠在动脉粥样硬化程度大于雄性。模型饲料喂养的小鼠除了头臂动脉和主动脉,还在腹主动脉发生动脉粥样硬化,雄性小鼠动脉粥样硬化程度大于雌性。因此,在动脉粥样硬化造模时,不应当采用雌雄混合,而应当选用雄性。

2.LDLRKO小鼠动脉粥样硬化的造模

关于其他有关注意事项,请点击:LDLR-/-小鼠动脉粥样硬化模型的造模和模型饲料要求。  

References:

Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, et al. Disturbed Flow Promotes Endothelial Senescence via a p53-Dependent Pathway. Arteriosclerosis, thrombosis, and vascular biology. 2014.

Wanschel AC, Caceres VM, Moretti AI, Bruni-Cardoso A, de Carvalho HF, de Souza HP, et al. Cardioprotective mechanism of S-nitroso-N-acetylcysteine via S-nitrosated betadrenoceptor-2 in the LDLr-/- mice. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society. 2014;36:58-66.

Steiner T, Francescut L, Byrne S, Hughes T, Jayanthi A, Guschina I, et al. Protective role for properdin in progression of experimental murine atherosclerosis. PloS one. 2014;9(3):e92404.

Simsekyilmaz S, Cabrera-Fuentes HA, Meiler S, Kostin S, Baumer Y, Liehn EA, et al. Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation. 2014;129(5):598-606.

Plat J, Theuwissen E, Husche C, Lutjohann D, Gijbels MJ, Jeurissen M, et al. Oxidised plant sterols as well as oxycholesterol increase the proportion of severe atherosclerotic lesions in female LDL receptor+/ - mice. The British journal of nutrition. 2014;111(1):64-70.

Neuhofer A, Wernly B, Leitner L, Sarabi A, Sommer NG, Staffler G, et al. An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovascular diabetology. 2014;13:23.

Meydani M, Kwan P, Band M, Knight A, Guo W, Goutis J, et al. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet. Atherosclerosis. 2014;233(1):196-205.

Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014;232(1):40-51.

Funke A, Schreurs M, Aparicio-Vergara M, Sheedfar F, Gruben N, Kloosterhuis NJ, et al. Cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male LDL receptor knockout mice. Atherosclerosis. 2014;232(2):390-6.

de Haan W, Bhattacharjee A, Ruddle P, Kang MH, Hayden MR. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. Journal of lipid research. 2014;55(3):516-23.

Dai Y, Palade P, Wang X, Mercanti F, Ding Z, Dai D, et al. High fat diet causes renal fibrosis in LDLr-null mice through MAPK-NF-kappaB pathway mediated by Ox-LDL. Journal of cardiovascular pharmacology. 2014;63(2):158-66.

Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A. Programmed Cell Death-1 Deficiency Exacerbates T Cell Activation and Atherogenesis despite Expansion of Regulatory T Cells in Atherosclerosis-Prone Mice. PloS one. 2014;9(4):e93280.

Busch M, Westhofen TC, Koch M, Lutz MB, Zernecke A. Dendritic cell subset distributions in the aorta in healthy and atherosclerotic mice. PloS one. 2014;9(2):e88452.

Al Rajabi A, Castro GS, da Silva RP, Nelson RC, Thiesen A, Vannucchi H, et al. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. The Journal of nutrition. 2014;144(3):252-7.

Zhao J, Zhu H, Wang S, Ma X, Liu X, Wang C, et al. Naoxintong protects against atherosclerosis through lipid-lowering and inhibiting maturation of dendritic cells in LDL receptor knockout mice fed a high-fat diet. Current pharmaceutical design. 2013;19(33):5891-6.

Zhang BC, Li XK, Che WL, Li WM, Hou L, Wei YD, et al. [Peroxisome proliferator-activated receptor alpha/gamma agonist tesaglitazar stabilizes atherosclerotic plaque in diabetic low density lipoprotein receptor knockout mice]. Zhonghua xin xue guan bing za zhi. 2013;41(2):143-9.

Yoshimura Y, Nishii S, Zaima N, Moriyama T, Kawamura Y. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese, diabetic KK-A(y) mice. Biochemical and biophysical research communications. 2013;434(3):486-91.

Xia M, Chen D, Endresz V, Faludi I, Szabo A, Gonczol E, et al. Immunization of Chlamydia pneumoniae (Cpn)-infected Apob(tm2Sgy)Ldlr(tm1Her)/J mice with a combined peptide of Cpn significantly reduces atherosclerotic Wen S, Jadhav KS, Williamson DL, Rideout TC. Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice. Journal of lipids. 2013;2013:908048.

Wang S, Miller B, Matthan NR, Goktas Z, Wu D, Reed DB, et al. Aortic cholesterol accumulation correlates with systemic inflammation but not hepatic and gonadal adipose tissue inflammation in low-density lipoprotein receptor null mice. Nutrition research. 2013;33(12):1072-82.

van Leeuwen M, Kemna MJ, de Winther MP, Boon L, Duijvestijn AM, Henatsch D, et al. Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PloS one. 2013;8(7):e68039.

Subramanian S, Turner MS, Ding Y, Goodspeed L, Wang S, Buckner JH, et al. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice. Journal of lipid research. 2013;54(10):2831-41.

Strack AM, Carballo-Jane E, Wang SP, Xue J, Ping X, McNamara LA, et al. Nicotinic acid and DP1 blockade: studies in mouse models of atherosclerosis. Journal of lipid research. 2013;54(1):177-88.

Sinningen K, Rauner M, Goettsch C, Al-Fakhri N, Schoppet M, Hofbauer LC. Monocytic expression of osteoclast-associated receptor (OSCAR) is induced in atherosclerotic mice and regulated by oxidized low-density lipoprotein in vitro. Biochemical and biophysical research communications. 2013;437(2):314-8.

Saraswathi V, Ramnanan CJ, Wilks AW, Desouza CV, Eller AA, Murali G, et al. Impact of hematopoietic cyclooxygenase-1 deficiency on obesity-linked adipose tissue inflammation and metabolic disorders in mice. Metabolism: clinical and experimental. 2013;62(11):1673-85.



有困惑?那就商量呗!


LDLR基因敲除小鼠其他疾病模型复制与模型饲料

小帮手
关闭
收藏本网站