返回
专题      专题
返回

目录

动脉粥样硬化模型

LDL knockout小鼠(LDLR-deificient mouse)

LDL受体基因小鼠

动脉粥样硬化造模和模型饲料



LDL受体基因敲除(LDLR-/-)小鼠
动脉粥样硬化模型高脂肪高胆固醇模型饲料
High-Fat High-Cholesterol Diet of Atherosclerosis for LDL receptor-deficient(LDLR-KO)Mice

原理

LDLR基因感敲除(LDLR-/-)小鼠动脉粥样硬化的发生和发展对饲料胆固醇和脂肪含量与类型都比较敏感,因此,高脂肪高胆固醇饲料(HFHC diet)广泛用于动脉粥样硬化模型的造模和相关研究。

一、TP26300系列“西方饮食”模型饲料(高脂高胆固醇模型饲料)


当前最常采用的Hayek的西方饮食模型饲料(Western-type diet),属于高脂、高糖、高胆固醇模型饲料,其主要参数如下:

高饱和脂肪(无水奶油),脂肪含量为21%,脂肪热量42%,胆固醇含量为0.2%(添加0.15%)。

该模型饲料在Harlan公司的代码是TD88137,在ResearchDiet公司的代码是D12492,TestDiet公司的代码是58Y1。而在南通特洛菲饲料科技有限公司的饲料代码是TP26300系列,为什么是一个系列的饲料呢?

一是Hayek(88137)模型饲料营养素不是很合理,需要考虑进行优化。

二是Hayek(88137)模型饲料不适合从成年期开始喂养的动物。

关于为什么要优化和优化的重要性的详细说明,请阅读“Hayek(TD88137)西方饮食模型饲料存在的问题和纠正”。

因此,TP26300系列包括了不优化,优化,针对成年期使用三个方案的模型饲料:

TP26300:没有优化;

TP26301:优化了脂肪酸;

TP26303:优化了脂肪酸和微量营养素,适用于未成年期开始喂养;

TP26304:成年期开始喂养,脂肪为无水奶油;

TP26305:成年期开始喂养。脂肪以饱和脂肪为主。

如果你对TP26300系列模型饲料感兴趣,请点击浏览:Hayek(TD88137)西方饮食模型饲料介绍

二、TP26370和TP26371高脂高胆固醇模型饲料介绍


LDLR基因敲除小鼠动脉粥样硬化的发生和发展不仅取决于饲料中胆固醇浓度,而且对单不饱和脂肪高度敏感(超过对饱和脂肪的敏感性)。因此,以单不饱和脂肪酸为主的高脂高胆固醇模型饲料可用于复制动脉粥样硬化模型。南通特洛菲饲料科技有限公司的饲料代码分别为TP26370和TP26371,模型饲料的主要参数是:

脂肪以单不包含脂肪酸为主,脂肪18.7%,脂肪热量40%;胆固醇0.2%。

其中,TP26370适用于未成年期开始喂养,TP26371适用于从成年期开始喂养。

三、TP28500系列高脂高胆固醇模型饲料介绍


TP28500系列是Clinton-Cybulsky高脂高胆固醇模型饲料。

TP28500系列Clinton-Cybulsky高脂高胆固醇模型饲料

  • 40%脂肪高胆固醇模型饲料(Clinton-Cybulsky高脂肪高胆固醇模型饲料)
  • 40%脂肪(20%w),1.25%胆固醇,0.5%胆盐(胆酸)
  • 40%脂肪(20%w),1.25%胆固醇
  • 40%脂肪(20%w),0.5%胆固醇

由于Clinton-Cybulsky高脂高胆固醇模型饲料的原先配比存在需要优化之处,因此,南通特洛菲饲料科技有限公司提供了不优化和优化和重新设计三种方案。

特洛菲饲料科技有限公司
LDLR受体基因敲除小鼠高血脂、动脉粥样硬化模型常用造模饲料
Clinton-Cybulsky高脂肪高胆固醇模型饲料

40%脂肪,1.25%胆固醇,0.5%胆盐:

markerTP28540

与原配比相同。用于未成年。点击:展开↓

markerTP28500

优化了原配比的微量营养素。用于未成年。点击:展开↓

markerTP28520

基于原配比,为成年期喂养特别设计。点击:展开↓

40%脂肪,1.25%胆固醇:

markerTP28541

与原配比相同。用于未成年。点击:展开↓

markerTP28501

优化了微量营养素。用于未成年期。点击:展开↓

markerTP28521

基于原配比,为成年期喂养特别设计。点击:展开↓

40%脂肪,0.5%胆固醇:

markerTP28542

与原配比相同,用于未成年期喂养。点击:展开↓

markerTP28502

优化了微量营养素。用于未成年期。点击:展开↓

markerTP28522

TP28522专为成年期设计。点击:展开↓

四、TP25700系列日粮型高脂高胆固醇模型饲料介绍


以上介绍的是纯化型饲料,价格相对较高。日粮型模型饲料的优点是相对便宜。

TP25700系列模型饲料属于日粮型模型饲料,是以高品质的普通饲料为基础,添加脂肪和胆固醇(高脂高胆固醇饲料),或者添加胆固醇(高胆固醇饲料)。

TP25700系列模型饲料中”系列“二字有两个方面的含义:一是脂肪含量和胆固醇含量不同,从而代码不同(TP257**),二是随着脂肪类型不同而出现系列,例如,TP25704实际上包含了添加不同脂肪类型而成为系列(见下文)。

特洛菲饲料科技有限公司
日粮型高脂肪高胆固醇或高胆固醇模型饲料

marker高脂肪高胆固醇饲料

TP25700系列

21%脂肪,0.2%胆固醇,展开↓

TP25704系列

基础饲料添加15%脂肪,0.2%胆固醇,展开↓

TP25705系列

基础饲料添加15%脂肪,1.25%胆固醇,展开↓

TP25710系列

基础饲料添加21%脂肪,0.5%胆固醇,展开↓

TP25715系列

基础饲料添加10%脂肪,0.5%胆固醇,展开↓

TP25716系列

基础饲料添加10%脂肪,4%胆固醇。

上表中所列的模型饲料中采用的基础饲料,均为特洛菲饲料科技有限公司的LAD0011饲料,详细情况,请点击浏览网页:LAD0011介绍:脂蛋白代谢及其相关的基因工程大鼠和小鼠的日常喂养饲料

五、LDLR敲除小鼠高脂高胆固醇模型饲料使用以及动脉粥样硬化造模注意事项


1.LDLR基因敲除小鼠喂高脂高胆固醇饲料后的表现

LDLR-/-小鼠对高脂高糖饲料敏感,发生肥胖、胰岛素抵抗或糖尿病(血糖升高),而胆固醇加重动脉粥样硬化,因此,有可能是属于糖尿病性动脉粥样硬化和胆固醇所致的动脉粥样硬化的综合体现。

此外,可能伴有非酒精性脂肪肝、胃炎等表现。

2.LDLR基因敲除小鼠喂高脂高胆固醇饲料后的动脉粥样硬化表现

LDLR-/-小鼠动脉粥样硬化从主动脉起始部位(主动脉根部)开始,逐渐向头臂动脉(Brachiocephalic artery)、主动脉、腹主动脉延展。动脉粥样硬化定量时特别要注意头臂动脉的情况。

在普通饲料喂养后也自发地形成高胆固醇血症和动脉粥样硬化,而用上述介绍的模型喂养后,血浆胆固醇水平大幅度升高,动脉粥样硬化发生更早、程度更严重。也就是普通饲料和模型饲料喂养效果的差别在于:出现时间和病变程度的差别。

关于其他有关注意事项,请点击:LDLR-/-小鼠动脉粥样硬化模型的造模和模型饲料要求。

References:

Ruotsalainen AK, Inkala M, Partanen ME, Lappalainen JP, Kansanen E, Makinen PI, et al. The absence of macrophage Nrf2 promotes early atherogenesis. Cardiovascular research. 2013;98(1):107-15.

Radonjic M, Wielinga PY, Wopereis S, Kelder T, Goelela VS, Verschuren L, et al. Differential effects of drug interventions and dietary lifestyle in developing type 2 diabetes and complications: a systems biology analysis in LDLr-/- mice. PloS one. 2013;8(2):e56122.

Muthuramu I, Jacobs F, Singh N, Gordts SC, De Geest B. Selective homocysteine lowering gene transfer improves infarct healing, attenuates remodelling, and enhances diastolic function after myocardial infarction in mice. PloS one. 2013;8(5):e63710.

Mundkur LA, Varma M, Shivanandan H, Krishna D, Kumar K, Lu X, et al. Activation of inflammatory cells and cytokines by peptide epitopes in vitro: a simple in-vitro screening assay for prioritizing them for in-vivo studies. Inflammation research : official journal of the European Histamine Research Society [et al]. 2013;62(5):471-81.

Manthey HD, Cochain C, Barnsteiner S, Karshovska E, Pelisek J, Koch M, et al. CCR6 selectively promotes monocyte mediated inflammation and atherogenesis in mice. Thrombosis and haemostasis. 2013;110(6):1267-77.

Luo N, Chung BH, Wang X, Klein RL, Tang CK, Garvey WT, et al. Enhanced adiponectin actions by overexpression of adiponectin receptor 1 in macrophages. Atherosclerosis. 2013;228(1):124-35.

Lou Y, Liu S, Zhang C, Zhang G, Li J, Ni M, et al. Enhanced atherosclerosis in TIPE2-deficient mice is associated with increased macrophage responses to oxidized low-density lipoprotein. Journal of immunology. 2013;191(9):4849-57.

Lorbek G, Perse M, Horvat S, Bjorkhem I, Rozman D. Sex differences in the hepatic cholesterol sensing mechanisms in mice. Molecules. 2013;18(9):11067-85.

Liu J, Xu A, Lam KS, Wong NS, Chen J, Shepherd PR, et al. Cholesterol-induced mammary tumorigenesis is enhanced by adiponectin deficiency: role of LDL receptor upregulation. Oncotarget. 2013;4(10):1804-18.

LLee RG, Fu W, Graham MJ, Mullick AE, Sipe D, Gattis D, et al. Comparison of the pharmacological profiles of murine antisense oligonucleotides targeting apolipoprotein B and microsomal triglyceride transfer protein. Journal of lipid research. 2013;54(3):602-14.

Laplante MA, Charbonneau A, Avramoglu RK, Pelletier P, Fang X, Bachelard H, et al. Distinct metabolic and vascular effects of dietary triglycerides and cholesterol in atherosclerotic and diabetic mouse models. American journal of physiology Endocrinology and metabolism. 2013;305(5):E573-84.

Kinnunen K, Heinonen SE, Kalesnykas G, Laidinen S, Uusitalo-Jarvinen H, Uusitalo H, et al. LDLR-/-ApoB100/100 mice with insulin-like growth factor II overexpression reveal a novel form of retinopathy with photoreceptor atrophy and altered morphology of the retina. Molecular vision. 2013;19:1723-33.

Hendrikx T, Bieghs V, Walenbergh SM, van Gorp PJ, Verheyen F, Jeurissen ML, et al. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice. PloS one. 2013;8(12):e78792.

Han L, Tang MX, Ti Y, Wang ZH, Wang J, Ding WY, et al. Overexpressing STAMP2 improves insulin resistance in diabetic ApoE(-)/(-)/LDLR(-)/(-) mice via macrophage polarization shift in adipose tissues. PloS one. 2013;8(11):e78903.

Gupte AA, Minze LJ, Reyes M, Ren Y, Wang X, Brunner G, et al. High-fat feeding-induced hyperinsulinemia increases cardiac glucose uptake and mitochondrial function despite peripheral insulin resistance. Endocrinology. 2013;154(8):2650-62.

Guo W, Wong S, Bhasin S. AAV-mediated administration of myostatin pro-peptide mutant in adult Ldlr null mice reduces diet-induced hepatosteatosis and arteriosclerosis. PloS one. 2013;8(8):e71017.

Foley EM, Gordts PL, Stanford KI, Gonzales JC, Lawrence R, Stoddard N, et al. Hepatic remnant lipoprotein clearance by heparan sulfate proteoglycans and low-density lipoprotein receptors depend on dietary conditions in mice. Arteriosclerosis, thrombosis, and vascular biology. 2013;33(9):2065-74.

Douglas RM, Bowden K, Pattison J, Peterson AB, Juliano J, Dalton ND, et al. Intermittent hypoxia and hypercapnia induce pulmonary artery atherosclerosis and ventricular dysfunction in low density lipoprotein receptor deficient mice. Journal of applied physiology. 2013;115(11):1694-704.

Ding Z, Mizeracki AM, Hu C, Mehta JL. LOX-1 deletion and macrophage trafficking in atherosclerosis. Biochemical and biophysical research communications. 2013;440(2):210-4.

Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Scientific reports. 2013;3:1077.

Di Mascolo D, C JL, Aryal S, Ramirez MR, Wang J, Candeloro P, et al. Rosiglitazone-loaded nanospheres for modulating macrophage-specific inflammation in obesity. Journal of controlled release : official journal of the Controlled Release Society. 2013;170(3):460-8.

Depner CM, Philbrick KA, Jump DB. Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis. The Journal of nutrition. 2013;143(3):315-23.

Chakraborty M, Lou C, Huan C, Kuo MS, Park TS, Cao G, et al. Myeloid cell-specific serine palmitoyltransferase subunit 2 haploinsufficiency reduces murine atherosclerosis. The Journal of clinical investigation. 2013;123(4):1784-97.

Caravaggio JW, asu M, MacLaren R, Thabet M, Raizman JE, Veinot JP, et al. Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice. Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology. 2013;22(6):458-64.

CCampbell IC, Weiss D, Suever JD, Virmani R, Veneziani A, Vito RP, et al. Biomechanical modeling and morphology analysis indicates plaque rupture due to mechanical failure unlikely in atherosclerosis-prone mice. American journal of physiology Heart and circulatory physiology. 2013;304(3):H473-86.

Botelho PB, Mariano Kda R, Rogero MM, de Castro IA. Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice. Lipids in health and disease. 2013;12:38.

Bombo RP, Afonso MS, Machado RM, Lavrador MS, Nunes VS, Quintao ER, et al. Dietary phytosterol does not accumulate in the arterial wall and prevents atherosclerosis of LDLr-KO mice. Atherosclerosis. 2013;231(2):442-7.

Bieghs V, Hendrikx T, van Gorp PJ, Verheyen F, Guichot YD, Walenbergh SM, et al. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice. Gastroenterology. 2013;144(1):167-78 e1.

Assini JM, Mulvihill EE, Sutherland BG, Telford DE, Sawyez CG, Felder SL, et al. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr(-)/(-) mice. Journal of lipid research. 2013;54(3):711-24.

Ali H, Emoto N, Yagi K, Vignon-Zellweger N, Nakayama K, Hatakeyama K, et al. Localization and Characterization of a Novel Secreted Protein, SCUBE2, in the Development and Progression of Atherosclerosis. The Kobe journal of medical sciences. 2013;59(4):E122-31.

Zhang Y, e X, Heemstra LA, Chen WD, Xu J, Smith JL, et al. Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Molecular endocrinology. 2012;26(2):272-80.

Zhang L, Ovchinnikova O, Jonsson A, Lundberg AM, Berg M, Hansson GK, et al. The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice. European heart journal. 2012;33(16):2025-34.

Zhang BC, Li WM, Li XK, Zhu MY, Che WL, Xu YW. Tesaglitazar ameliorates non-alcoholic fatty liver disease and atherosclerosis development in diabetic low-density lipoprotein receptor-deficient mice. Experimental and therapeutic medicine. 2012;4(6):987-92.

Zhang BC, Li WM, Guo R, Xu YW. Salidroside decreases atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice. Evidence-based complementary and alternative medicine : eCAM. 2012;2012:607508.

Yang FZ, Zhou J, Li WW, Wang F, Wen PY, Zhou L, et al. [Nuclear factor kappaB and IKB expression and calcium deposition of atherosclerotic plaques in apolipoprotein E and low density lipoprotein receptor knockout mice]. Zhonghua xin xue guan bing za zhi. 2012;40(8):684-9. 63.

Xu J, Wang S, Zhang M, Wang Q, Asfa S, Zou MH. Tyrosine nitration of PA700 links proteasome activation to endothelial dysfunction in mouse models with cardiovascular risk factors. PloS one. 2012;7(1):e29649.

Wang ZH, Shang YY, Zhang S, Zhong M, Wang XP, Deng JT, et al. Silence of TRIB3 suppresses atherosclerosis and stabilizes plaques in diabetic ApoE-/-/LDL receptor-/- mice. Diabetes. 2012;61(2):463-73.

Umemoto T, Subramanian S, Ding Y, Goodspeed L, Wang S, Han CY, et al. Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation. Journal of lipid research. 2012;53(11):2380-9.

Teodoro BG, Natali AJ, Fernandes SA, Silva LA, Pinho RA, Matta SL, et al. Improvements of atherosclerosis and hepatic oxidative stress are independent of exercise intensity in LDLr(-/-) mice. Journal of atherosclerosis and thrombosis. 2012;19(10):904-11.

Soares EA, Nakagaki WR, Garcia JA, Camilli JA. Effect of hyperlipidemia on femoral biomechanics and morphology in low-density lipoprotein receptor gene knockout mice. Journal of bone and mineral metabolism. 2012;30(4):419-25.

Saraste A, Laitinen I, Weidl E, Wildgruber M, Weber AW, Nekolla SG, et al. Diet intervention reduces uptake of alphavbeta3 integrin-targeted PET tracer 18F-galacto-RGD in mouse atherosclerotic plaques. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology. 2012;19(4):775-84.

Sage AP, Tsiantoulas D, Baker L, Harrison J, Masters L, Murphy D, et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice--brief report. Arteriosclerosis, thrombosis, and vascular biology. 2012;32(7):1573-6.

Rensen SS, Bieghs V, Xanthoulea S, Arfianti E, Bakker JA, Shiri-Sverdlov R, et al. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PloS one. 2012;7(12):e52411.

Pirih F, Lu J, Ye F, Bezouglaia O, Atti E, Ascenzi MG, et al. Adverse effects of hyperlipidemia on bone regeneration and strength. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2012;27(2):309-18.

Murali G, Milne GL, Webb CD, Stewart AB, McMillan RP, Lyle BC, et al. Fish oil and indomethacin in combination potently reduce dyslipidemia and hepatic steatosis in LDLR(-/-) mice. Journal of lipid research. 2012;53(10):2186-97.

Momi S, Monopoli A, Alberti PF, Falcinelli E, Corazzi T, Conti V, et al. Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovascular research. 2012;94(3):428-38.

Modulo CM, Machado Filho EB, Malki LT, Dias AC, de Souza JC, Oliveira HC, et al. The role of dyslipidemia on ocular surface, lacrimal and meibomian gland structure and function. Current eye research. 2012;37(4):300-8.

Machado RM, Nakandakare ER, Quintao EC, Cazita PM, Koike MK, Nunes VS, et al. Omega-6 polyunsaturated fatty acids prevent atherosclerosis development in LDLr-KO mice, in spite of displaying a pro-inflammatory profile similar to trans fatty acids. Atherosclerosis. 2012;224(1):66-74.

Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H, et al. Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PloS one. 2012;7(4):e35835.

Lu X, Xia M, Endresz V, Faludi I, Mundkur L, Gonczol E, et al. Immunization with a combination of 2 peptides derived from the C5a receptor significantly reduces early atherosclerotic lesion in Ldlr(tm1Her) Apob(tm2Sgy) J mice. Arteriosclerosis, thrombosis, and vascular biology. 2012;32(10):2358-71.

LLombardo E, van Roomen CP, van Puijvelde GH, Ottenhoff R, van Eijk M, Aten J, et al. Correction of liver steatosis by a hydrophobic iminosugar modulating glycosphingolipids metabolism. PloS one. 2012;7(10):e38520.

Lingrel JB, Pilcher-Roberts R, Basford JE, Manoharan P, Neumann J, Konaniah ES, et al. Myeloid-specific Kruppel-like factor 2 inactivation increases macrophage and neutrophil adhesion and promotes atherosclerosis. Circulation research. 2012;110(10):1294-302.

Lian J, Quiroga AD, Li L, Lehner R. Ces3/TGH deficiency improves dyslipidemia and reduces atherosclerosis in Ldlr(-/-) mice. Circulation research. 2012;111(8):982-90.

Lewis MJ, Malik TH, Fossati-Jimack L, Carassiti D, Cook HT, Haskard DO, et al. Distinct roles for complement in glomerulonephritis and atherosclerosis revealed in mice with a combination of lupus and hyperlipidemia. Arthritis and rheumatism. 2012;64(8):2707-18.

Krishna SM, eto SW, Moxon JV, Rush C, Walker PJ, Norman PE, et al. Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. The American journal of pathology. 2012;181(2):706-18.

Kostogrys RB, Franczyk-Zarow M, Maslak E, Gajda M, Mateuszuk L, Jackson CL, et al. Low carbohydrate, high protein diet promotes atherosclerosis in apolipoprotein E/low-density lipoprotein receptor double knockout mice (apoE/LDLR(-/-)). Atherosclerosis. 2012;223(2):327-31.

Kim EH, Bae JS, Hahm KB, Cha JY. Endogenously synthesized n-3 polyunsaturated fatty acids in fat-1 mice ameliorate high-fat diet-induced non-alcoholic fatty liver disease. Biochemical pharmacology. 2012;84(10):1359-65.

Kennedy A, Gruen ML, Gutierrez DA, Surmi BK, Orr JS, Webb CD, et al. Impact of macrophage inflammatory protein-1alpha deficiency on atherosclerotic lesion formation, hepatic steatosis, and adipose tissue expansion. PloS one. 2012;7(2):e31508.

Han H, Xin P, Zhao L, Xu J, Xia Y, Yang X, et al. Excess iodine and high-fat diet combination modulates lipid profile, thyroid hormone, and hepatic LDLr expression values in mice. Biological trace element research. 2012;147(1-3):233-9.

Hambruch E, Miyazaki-Anzai S, Hahn U, Matysik S, Boettcher A, Perovic-Ottstadt S, et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (-/-) mice. The Journal of pharmacology and experimental therapeutics. 2012;343(3):556-67.

Hager L, Li L, Pun H, Liu L, Hossain MA, Maguire GF, et al. Lecithin:cholesterol acyltransferase deficiency protects against cholesterol-induced hepatic endoplasmic reticulum stress in mice. The Journal of biological chemistry. 2012;287(24):20755-68.

Feng Y, Schouteden S, Geenens R, Van Duppen V, Herijgers P, Holvoet P, et al. Hematopoietic stem/progenitor cell proliferation and differentiation is differentially regulated by high-density and low-density lipoproteins in mice. PloS one. 2012;7(11):e47286.

Engelbertsen D, To F, Duner P, Kotova O, Soderberg I, Alm R, et al. Increased inflammation in atherosclerotic lesions of diabetic Akita-LDLr(-)/(-) mice compared to nondiabetic LDLr(-)/(-) mice. Experimental diabetes research. 2012;2012:176162.

Derwall M, Malhotra R, Lai CS, Beppu Y, Aikawa E, Seehra JS, et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2012;32(3):613-22.

Depner CM, Torres-Gonzalez M, Tripathy S, Milne G, Jump DB. Menhaden oil decreases high-fat diet-induced markers of hepatic damage, steatosis, inflammation, and fibrosis in obese Ldlr-/- mice. The Journal of nutrition. 2012;142(8):1495-503.

Deevska GM, Sunkara M, Morris AJ, Nikolova-Karakashian MN. Characterization of secretory sphingomyelinase activity, lipoprotein sphingolipid content and LDL aggregation in ldlr-/- mice fed on a high-fat diet. Bioscience reports. 2012;32(5):479-90.

Curtiss LK, Black AS, Bonnet DJ, Tobias PS. Atherosclerosis induced by endogenous and exogenous toll-like receptor (TLR)1 or TLR6 agonists. Journal of lipid research. 2012;53(10):2126-32.

Bieghs V, Van Gorp PJ, Wouters K, Hendrikx T, Gijbels MJ, van Bilsen M, et al. LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. PloS one. 2012;7(1):e30668.

Bieghs V, van Gorp PJ, Walenbergh SM, Gijbels MJ, Verheyen F, Buurman WA, et al. Specific immunization strategies against oxidized low-density lipoprotein: a novel way to reduce nonalcoholic steatohepatitis in mice. Hepatology. 2012;56(3):894-903.

Bermejo-Alvarez P, Rosenfeld CS, Roberts RM. Effect of maternal obesity on estrous cyclicity, embryo development and blastocyst gene expression in a mouse model. Human reproduction. 2012;27(12):3513-22.

Bai Q, Zhang X, Xu L, Kakiyama G, Heuman D, Sanyal A, et al. Oxysterol sulfation by cytosolic sulfotransferase suppresses liver X receptor/sterol regulatory element binding protein-1c signaling pathway and reduces serum and hepatic lipids in mouse models of nonalcoholic fatty liver disease. Metabolism: clinical and experimental. 2012;61(6):836-45.

Zhao L, Chen Y, Tang R, Chen Y, Li Q, Gong J, et al. Inflammatory stress exacerbates hepatic cholesterol accumulation via increasing cholesterol uptake and de novo synthesis. Journal of gastroenterology and hepatology. 2011;26(5):875-83.

Zhang X, Hurng J, Rateri DL, Daugherty A, Schmid-Schonbein GW, Shin HY. Membrane cholesterol modulates the fluid shear stress response of polymorphonuclear leukocytes via its effects on membrane fluidity. American journal of physiology Cell physiology. 2011;301(2):C451-60.

Yang Y, Seo JM, Nguyen A, Pham TX, Park HJ, Park Y, et al. Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice. The Journal of nutrition. 2011;141(9):1611-7.

Wang L, Yamasaki M, Katsube T, Sun X, Yamasaki Y, Shiwaku K. Antiobesity effect of polyphenolic compounds from molokheiya (Corchorus olitorius L.) leaves in LDL receptor-deficient mice. European journal of nutrition. 2011;50(2):127-33.

Tang EH, Shimizu K, Christen T, Rocha VZ, Shvartz E, Tesmenitsky Y, et al. Lack of EP4 receptors on bone marrow-derived cells enhances inflammation in atherosclerotic lesions. Cardiovascular research. 2011;89(1):234-43.

Subramanian S, Goodspeed L, Wang S, Kim J, Zeng L, Ioannou GN, et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. Journal of lipid research. 2011;52(9):1626-35.

Silvola JM, Saraste A, Laitinen I, Savisto N, Laine VJ, Heinonen SE, et al. Effects of age, diet, and type 2 diabetes on the development and FDG uptake of atherosclerotic plaques. JACC Cardiovascular imaging. 2011;4(12):1294-301.

Shen L, Matsunami Y, Quan N, Kobayashi K, Matsuura E, Oguma K. In vivo oxidation, platelet activation and simultaneous occurrence of natural immunity in atherosclerosis-prone mice. The Israel Medical Association journal : IMAJ. 2011;13(5):278-83.

Shao JS, Sierra OL, Cohen R, Mecham RP, Kovacs A, Wang J, et al. Vascular calcification and aortic fibrosis: a bifunctional role for osteopontin in diabetic arteriosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2011;31(8):1821-33.

Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124(21):2338-49.

Sage AP, Lu J, Atti E, Tetradis S, Ascenzi MG, Adams DJ, et al. Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2011;26(6):1197-206.

Paik J, Fierce Y, Mai PO, Phelps SR, McDonald T, Treuting P, et al. Murine norovirus increases atherosclerotic lesion size and macrophages in Ldlr(-/-) mice. Comparative medicine. 2011;61(4):330-8.

Li L, Hossain MA, Sadat S, Hager L, Liu L, Tam L, et al. Lecithin cholesterol acyltransferase null mice are protected from diet-induced obesity and insulin resistance in a gender-specific manner through multiple pathways. The Journal of biological chemistry. 2011;286(20):17809-20.

Kassim SH, Vandenberghe LH, Hovhannisyan R, Wilson JM, Rader DJ. Identification and functional characterization in vivo of a novel splice variant of LDLR in rhesus macaques. Physiological genomics. 2011;43(15):911-6.

Karavia EA, Papachristou DJ, Kotsikogianni I, Giopanou I, Kypreos KE. Deficiency in apolipoprotein E has a protective effect on diet-induced nonalcoholic fatty liver disease in mice. The FEBS journal. 2011;278(17):3119-29.

Hu MM, Zhang J, Wang WY, Wu WY, Ma YL, Chen WH, et al. The inhibition of lipoprotein-associated phospholipase A2 exerts beneficial effects against atherosclerosis in LDLR-deficient mice. Acta pharmacologica Sinica. 2011;32(10):1253-8.

Heinonen SE, Merentie M, Hedman M, Makinen PI, Loponen E, Kholova I, et al. Left ventricular dysfunction with reduced functional cardiac reserve in diabetic and non-diabetic LDL-receptor deficient apolipoprotein B100-only mice. Cardiovascular diabetology. 2011;10:59.

Habegger KM, Grant E, Pfluger PT, Perez-Tilve D, Daugherty A, Bruemmer D, et al. Ghrelin Receptor Deficiency does not Affect Diet-Induced Atherosclerosis in Low-Density Lipoprotein Receptor-Null Mice. Frontiers in endocrinology. 2011;2:67.

Garcia JA, de Lima CC, Messora LB, Cruz AF, Marques AP, Simao TP, et al. [Anti-inflammatory effect of high-density lipoprotein on the cardiovascular system of hyperlipidemic mice]. Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of Cardiology. 2011;30(10):763-9.

Delsing DJ, Leijten FP, Arts K, van Eenennaam H, Garritsen A, Gijbels MJ, et al. Cannabinoid Receptor 2 Deficiency in Haematopoietic cells Aggravates Early Atherosclerosis in LDL Receptor Deficient Mice. The open cardiovascular medicine journal. 2011;5:15-21.

Bie J, Zhao B, Ghosh S. Atherosclerotic lesion progression is attenuated by reconstitution with bone marrow from macrophage-specific cholesteryl ester hydrolase transgenic mice. American journal of physiology Regulatory, integrative and comparative physiology. 2011;301(4):R967-74.

Babaev VR, Runner RP, Fan D, Ding L, Zhang Y, Tao H, et al. Macrophage Mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-gamma-regulated genes. Arteriosclerosis, thrombosis, and vascular biology. 2011;31(6):1283-90.

Awan Z, Denis M, Bailey D, Giaid A, Prat A, Goltzman D, et al. The LDLR deficient mouse as a model for aortic calcification and quantification by micro-computed tomography. Atherosclerosis. 2011;219(2):455-62.

Yamamoto Y, Yamashita T, Kitagawa F, Sakamoto K, Giddings JC, Yamamoto J. The effect of the long term aspirin administration on the progress of atherosclerosis in apoE-/- LDLR-/- double knockout mouse. Thrombosis research. 2010;125(3):246-52.

Vinaixa M, Rodriguez MA, Rull A, Beltran R, Blade C, Brezmes J, et al. Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease. Journal of proteome research. 2010;9(5):2527-38.

Tandy S, Chung RW, Kamili A, Wat E, Weir JM, Meikle PJ, et al. Hydrogenated phosphatidylcholine supplementation reduces hepatic lipid levels in mice fed a high-fat diet. Atherosclerosis. 2010;213(1):142-7.

Rull A, Beltran-Debon R, Aragones G, Rodriguez-Sanabria F, Alonso-Villaverde C, Camps J, et al. Expression of cytokine genes in the aorta is altered by the deficiency in MCP-1: effect of a high-fat, high-cholesterol diet. Cytokine. 2010;50(2):121-8.

Nookaew I, Gabrielsson BG, Holmang A, Sandberg AS, Nielsen J. Identifying molecular effects of diet through systems biology: influence of herring diet on sterol metabolism and protein turnover in mice. PloS one. 2010;5(8):e12361.

Ngai YF, Quong WL, Glier MB, Glavas MM, Babich SL, Innis SM, et al. Ldlr-/- mice display decreased susceptibility to Western-type diet-induced obesity due to increased thermogenesis. Endocrinology. 2010;151(11):5226-36.

Malik TH, Cortini A, Carassiti D, Boyle JJ, Haskard DO, Botto M. The alternative pathway is critical for pathogenic complement activation in endotoxin- and diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2010;122(19):1948-56.

Mak S, Sun H, Acevedo F, Shimmin LC, Zhao L, Teng BB, et al. Differential expression of genes in the calcium-signaling pathway underlies lesion development in the LDb mouse model of atherosclerosis. Atherosclerosis. 2010;213(1):40-51.

Litvinov D, Selvarajan K, Garelnabi M, Brophy L, Parthasarathy S. Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice. Atherosclerosis. 2010;209(2):449-54.

Kozak LP, Newman S, Chao PM, Mendoza T, Koza RA. The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PloS one. 2010;5(6):e11015.

Kelly JA, Griffin ME, Fava RA, Wood SG, Bessette KA, Miller ER, et al. Inhibition of arterial lesion progression in CD16-deficient mice: evidence for altered immunity and the role of IL-10. Cardiovascular research. 2010;85(1):224-31.

Gupte AA, Liu JZ, Ren Y, Minze LJ, Wiles JR, Collins AR, et al. Rosiglitazone attenuates age- and diet-associated nonalcoholic steatohepatitis in male low-density lipoprotein receptor knockout mice. Hepatology. 2010;52(6):2001-11.

Golledge J, Cullen B, Moran C, Rush C. Efficacy of simvastatin in reducing aortic dilatation in mouse models of abdominal aortic aneurysm. Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy. 2010;24(5-6):373-8.

Chang X, Yan H, Fei J, Jiang M, Zhu H, Lu D, et al. Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats. Journal of lipid research. 2010;51(9):2504-15.

Bonfleur ML, Vanzela EC, Ribeiro RA, de Gabriel Dorighello G, de Franca Carvalho CP, Collares-Buzato CB, et al. Primary hypercholesterolaemia impairs glucose homeostasis and insulin secretion in low-density lipoprotein receptor knockout mice independently of high-fat diet and obesity. Biochimica et biophysica acta. 2010;1801(2):183-90.

Bielicki JK, Zhang H, Cortez Y, Zheng Y, Narayanaswami V, Patel A, et al. A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice. Journal of lipid research. 2010;51(6):1496-503.

Bie J, Zhao B, Song J, Ghosh S. Improved insulin sensitivity in high fat- and high cholesterol-fed Ldlr-/- mice with macrophage-specific transgenic expression of cholesteryl ester hydrolase: role of macrophage inflammation and infiltration into adipose tissue. The Journal of biological chemistry. 2010;285(18):13630-7.

Zou Y, Du H, Yin M, Zhang L, Mao L, Xiao N, et al. Effects of high dietary fat and cholesterol on expression of PPAR alpha, LXR alpha, and their responsive genes in the liver of apoE and LDLR double deficient mice. Molecular and cellular biochemistry. 2009;323(1-2):195-205.

Zhu L, Stalker TJ, Fong KP, Jiang H, Tran A, Crichton I, et al. Disruption of SEMA4D ameliorates platelet hypersensitivity in dyslipidemia and confers protection against the development of atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2009;29(7):1039-45.

Zhao Y, Su B, Jacobs RL, Kennedy B, Francis GA, Waddington E, et al. Lack of phosphatidylethanolamine N-methyltransferase alters plasma VLDL phospholipids and attenuates atherosclerosis in mice. Arteriosclerosis, thrombosis, and vascular biology. 2009;29(9):1349-55.

Wang S, Wu D, Matthan NR, Lamon-Fava S, Lecker JL, Lichtenstein AH. Reduction in dietary omega-6 polyunsaturated fatty acids: eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis. 2009;204(1):147-55.

VanderLaan PA, Reardon CA, Thisted RA, Getz GS. VLDL best predicts aortic root atherosclerosis in LDL receptor deficient mice. Journal of lipid research. 2009;50(3):376-85.

van Leeuwen M, Damoiseaux J, Duijvestijn A, Heeringa P, Gijbels M, de Winther M, et al. The IgM response to modified LDL in experimental atherosclerosis: hypochlorite-modified LDL IgM antibodies versus classical natural T15 IgM antibodies. Annals of the New York Academy of Sciences. 2009;1173:274-9.

Tu P, Bhasin S, Hruz PW, Herbst KL, Castellani LW, Hua N, et al. Genetic disruption of myostatin reduces the development of proatherogenic dyslipidemia and atherogenic lesions in Ldlr null mice. Diabetes. 2009;58(8):1739-48.

Sun L, Ishida T, Yasuda T, Kojima Y, Honjo T, Yamamoto Y, et al. RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice. Cardiovascular research. 2009;82(2):371-81.

Soares SR, Carvalho-Oliveira R, Ramos-Sanchez E, Catanozi S, da Silva LF, Mauad T, et al. Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice. Atherosclerosis. 2009;207(2):368-73.

Saraswathi V, Morrow JD, Hasty AH. Dietary fish oil exerts hypolipidemic effects in lean and insulin sensitizing effects in obese LDLR-/- mice. The Journal of nutrition. 2009;139(12):2380-6.

Rull A, Rodriguez F, Aragones G, Marsillach J, Beltran R, Alonso-Villaverde C, et al. Hepatic monocyte chemoattractant protein-1 is upregulated by dietary cholesterol and contributes to liver steatosis. Cytokine. 2009;48(3):273-9.

Nakaya H, Summers BD, Nicholson AC, Gotto AM, Jr., Hajjar DP, Han J. Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by the PPARgamma ligand pioglitazone. The American journal of pathology. 2009;174(6):2007-14.

Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, et al. Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes. 2009;58(10):2198-210.



有困惑?那就商量呗!


LDLR基因敲除小鼠其他疾病模型复制与模型饲料

小帮手
关闭
收藏本网站