返回
 专题 
返回

目录

不同动物酒精性心肌病模型饲料
和模型复制方法


大鼠酒精性心肌病(ACM)
模型饲料和模型复制方法
Alcoholic Cardiomyopathy Rats Model (ACM Rat Model) and Diet

在“酒精性心肌病模型饲料和造模方法”中,我们已经介绍了ACM(alcoholic cardiomyopathy)建立的总体情况,现在我们详细介绍使用大鼠建立ACM。 如果想了解小鼠如何建立ACM,请见:小鼠酒精性心肌病模型饲料和模型复制方法

alert酒精性心肌病模型需要给予酒精的时间较长,严格地论证造模方法非常关键,马虎不得。因此,在选择动物和模型饲料方面,建议研究者在阅读后与南通特洛菲饲料科技有限公司进行技术交流,尽可能争取获得满意的模型。
实验技术
www.trophic.cn
2014年1月21日出版

大鼠酒精性心肌病模型复制方法

Alcoholic Cardiomyopathy Rats Model (ACM Model) and Diet
南通特洛菲饲料科技有限公司技术部

【摘要】本文介绍了应用大鼠进行酒精性心肌病(Rat Alcoholic Cardiomyopathy)造模的研究中曾经的激烈争论,在此基础上介绍了该模型建立时的注意事项,包括酒精给予方法、酒精热量的控制以及动物分组及其喂养方法三方面。

【关键词】心肌病模型;模型方法;大鼠;实验动物

酒精性心肌病(ACM,alcoholic cardiomyopathy)是一种扩张型心肌病(DCM,dilated cardiomyopathy),表现为心肌肥厚,心室肌收缩力下降,心输出量减少,心肌炎性细胞浸润,心脏纤维化。在人类患者可能与以下因素有关:(1)酒精(或酒精代谢产物乙醛:acetaldehyde)对心肌的毒性;(2)饮酒习惯导致饮食摄入热量和营养素(例如硫胺素B1,锌)不足而影响心脏功能;(3)酒精饮料中某些成分(例如钴摄入过多)的毒性。

但是,当建立“酒精性”(alcoholic)心肌病模型时,强调的就是(1),消除(2)和(3),因为(2)和(3)不属于“酒精性”。即便有ACM表现,但包含(2)或(3)都是不可用的

酒精能否使得大鼠形成ACM,应当注意哪些方面?,

一、了解曾经的争议对大鼠酒精性心肌病造模很重要

酒精对心脏功能影响的研究在大鼠中开展较早,对于酒精是否引起心肌病在上世纪70~80年代一直争论。在1980年,一篇论文采用了酒精液体饲料喂养大鼠,但是进行对比试验,即一组喂营养和热量合理的酒精液体饲料,另一组喂的饲料中热量和营养素缺乏,喂16周时分析和对比了心肌儿茶酚胺的水平和心肌形态学指标,发现两组之间没有差别,因此,认为酒精影响心脏是通过营养不足所致的。到了1984年,一篇论文采用饮水中加入酒精的办法,酒精加到20%喂养1年也没有引起心脏功能的改变,因此,研究者认为大鼠不太适合酒精性心肌病的模型动物。

到了1987年,一篇论文总结了以往酒精对心脏功能影响的研究,认为酒精并不能减弱心肌收缩能力,如果酒精处理时间比较长,则心肌对异丙肾上腺素或钙的急性反应减弱。

就在该文发表的当年,有一篇发表的论文中采用酒精液体饲料喂养10-12个月,试验证明酒精组的大鼠左室肌收缩能力下降,心肌肥厚,心肌等长收缩(搏出量和锋压)对异丙肾上腺素、胰高血糖素、儿茶酚丁胺的反应下降,心肌能量代谢障碍。实际上,这个实验室在1979年就已经发表论文,那时对比了高脂酒精液体饲料和低脂酒精液体饲料喂养34~48周对大鼠心脏的效应,发现两种酒精液体饲料都降低了心脏收缩力和心脏泵血功能,说明关键不在脂肪而在于酒精的作用。

次年(1988年),有一篇论文对酒精液体饲料喂养不同时间(2~11月)的大鼠心脏进行了离体研究(包括心脏的血流动力学、泵血功能和能量代谢),发现酒精液体饲料喂养大鼠2个月时右心室扩大,左心室没有改变,4个月时双侧心室肥大并且左心功能下降,11个月时左心输出量下降,博功下降,对儿茶酚丁胺(dobutamine)的敏感性下降,双侧心室扩大。

很显然,在大鼠中可以复制出酒精性心肌病。

他们的研究方法学特点是,在长期喂酒精液体饲料后采用离体心脏进行研究观察。那么,如果采用在体观察会怎么样?

后来其他实验室采用酒精液体饲料喂养大鼠,在喂8个月后用心动超声测量心脏功能,一系列指标都证明大鼠确实发生心肌病。实际上,后来相当多的研究都已经在大鼠中建立了心肌病模型开展深入研究。

二、从曾经的争议中得到的启示:ACM大鼠造模注意事项

在曾经的争议背后,给我们造模有什么提示?

1. 心肌病模型造模时,应当采用酒精液体饲料喂养,而不应该采用饮水中添加酒精。

饮水中添加酒精的方法有2个关键点影响动物:(1)升高血液酒精浓度的能力差。(2)饮水中酒精抑制动物摄食,长期如此引起营养不良。这两个缺点几乎无法克服。

这些方面也提醒读者,在你阅读到的论文中,凡是采用饮水中添加酒精的研究结果,一是要注意这样的研究结果可重复性可能受到影响,二是研究结果中可能掺杂了营养缺乏本身的效果,因此,对结论也要打问号。

2. 酒精液体饲料不仅要营养均衡,而且其中的酒精热量(含量)要足够高,喂养时间要足够长。

至于酒精液体饲料要做到营养均衡,这是可以理解的。酒精热量要达到一定高度也是可以理解的,但是,酒精热量应当确定在什么水平和喂养时间要多长,则很关键。酒精热量过高则在长期喂养过程中动物的营养状况会非常糟糕,死亡率高,而如果偏低,则难以复制出ACM。因此,需要从文献中认真调研确定,必要时可以通过与我们交流来确定。

3. 动物分组设计和酒精液体饲料喂养方法是ACM造模的关键

大凡是酒精对机能影响的研究都共同面临的问题是:酒精组指标与对照组比较的统计差异究竟是来自酒精对器官的作用,还是酒精引起了饮食改变或者体内营养素代谢改变所致。如果是后者,就拿心功能改变或心肌形态改变来说,则属于营养的问题,而不是酒精对心脏的作用,也就谈不上是“酒精性”心肌病,而是“营养异常性”心肌病。

对于这方面的问题,可以通过研究分组设计和适当的喂养方法来解决,实际上很多文献中都科学地进行了处理。如果研究者不清楚,请与本公司联系。

三、大鼠ACM造模的不足之处

大鼠喂酒精液体饲料,虽然有心肌功能异常和形态异常的ACM表现,但是,似乎不能发展为纤维化。在一篇文献中,喂酒精饲料的时间超过1年,但大鼠的心室不是肥厚,而是变薄。

为此,有研究者在酒精液体饲料喂养的同时进行LPS注射,观察到心肌肥厚、水肿、心肌纤维排列紊乱、间质纤维化等表现。

四、心脏功能评估方法

大鼠心脏发生了哪些改变和造模是否达到预期要求,评估的内容方法包括:

1. 心动超声定量分析心脏解剖和心功能测定。

2. 离体心脏灌流法观察心脏功能。

3. 离体细胞培养分析。

4. 心脏重量、形态学观察和测量。

5. 生化和分子生物学方法分析。

关于上述方法的具体说明,请见“酒精性心肌病模型饲料和模型复制方法”。

这里需要说明的是,心动超声是比较理想的在体评估心脏功能的方法,可以观察心输出量,搏出量,心率,等等)和心脏解剖(心脏大小、心室大小、心室壁的厚度,室中膈的厚度等等)。然而,医院用的超声设备的探头不可以用于大鼠,需要与超声波仪器设备配套的小动物用探头,因此,对实验室装备要求高。正因为如此,有的研究论文中没有采用,并不意味着不重要。

如果想了解小鼠如何建立ACM,请见:小鼠酒精性心肌病模型饲料和模型复制方法。如果想了解使用其他动物建立ACM的情况,请见:酒精性心肌病模型饲料和造模方法

【参考文献】

  • Segel LD. The development of alcohol-induced cardiac dysfunction in the rat. Alcohol Alcohol. 1988;23(5):391-401.
  • Davidson DM. Cardiovascular effects of alcohol. West J Med. 1989 Oct;151(4):430-9.
  • Lange LG, Sobel BE. Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol. J Clin Invest. 1983 Aug;72(2):724-31.
  • Rossi MA. Alcohol and malnutrition in the pathogenesis of experimental alcoholic cardiomyopathy. J Pathol. 1980 Feb;130(2):105-16.
  • Regan TJ, Morvai V. Experimental models for studying the effects of ethanol on the myocardium. Acta Med Scand Suppl. 1987;717:107-13.
  • Segel LD, Rendig SV, Mason DT. Left ventricular dysfunction of isolated working rat hearts after chronic alcohol consumption. Cardiovasc Res. 1979 Mar;13(3):136-46.
  • Segel LD. Alcoholic cardiomyopathy in rats: inotropic responses to phenylephrine, glucagon, ouabain, and dobutamine. J Mol Cell Cardiol. 1987 Nov;19(11):1061-72.
  • Segel LD. Tolerance to ethanol and cross-tolerance to pentobarbital by isolated hearts from chronic alcoholic rats. Alcohol Clin Exp Res. 1988 Aug;12(4):523-30.
  • Hepp A, Rudolph T, Kochsiek K. Is the rat a suitable model for studying alcoholic cardiomyopathy? Hemodynamic studies at various stages of chronic alcohol ingestion. Basic Res Cardiol. 1984 Mar-Apr;79(2):230-7.
  • Piano MR, Geenen DL, Schwertz DW, Chowdhury SA, Yuzhakova M. Long-term effects of alcohol consumption in male and female rats. Cardiovasc Toxicol. 2007;7(4):247-54.
  • Fogle RL, Hollenbeak CS, Stanley BA, Vary TC, Kimball SR, Lynch CJ. Functional proteomic analysis reveals sex-dependent differences in structural and energy-producing myocardial proteins in rat model of alcoholic cardiomyopathy. Physiol Genomics. 2011 Apr 12;43(7):346-56.
  • Vary TC, Kimball SR, Sumner A. Sex-dependent differences in the regulation of myocardial protein synthesis following long-term ethanol consumption. Am J hysiol Regul Integr Comp Physiol. 2007 Feb;292(2):R778-87.
  • Rossi MA. Alcohol and malnutrition in the pathogenesis of experimental alcoholic cardiomyopathy. J Pathol. 1980 Feb;130(2):105-16.
  • Lange LG, Sobel BE.Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol. J Clin Invest. 1983 Aug;72(2):724-31.
  • Lang CH, Frost RA, Summer AD, Vary TC. Molecular mechanisms responsible for alcohol-induced myopathy in skeletal muscle and heart. Int J Biochem Cell Biol. 2005 Oct;37(10):2180-95.
  • Jänkälä H, Eriksson PC, Eklund K, Sarviharju M, Härkönen M, Mäki T. Effect of chronic ethanol ingestion and gender on heart left ventricular p53 gene expression. Alcohol Clin Exp Res. 2005 Aug;29(8):1368-73.22.
  • Aberle NS 2nd, Burd L, Zhao BH, Ren J. Acetaldehyde-induced cardiac contractile dysfunction may be alleviated by vitamin B1 but not by vitamins B6 or B12. Alcohol Alcohol. 2004 Sep-Oct;39(5):450-4.
  • Aberle NS 2nd, Privratsky JR, Burd L, Ren J. Combined acetaldehyde and nicotine exposure depresses cardiac contraction in ventricular myocytes: prevention by folic acid. Neurotoxicol Teratol. 2003 Nov-Dec;25(6):731-6.
  • Kim SD, Bieniarz T, Esser KA, Piano MR. Cardiac structure and function after short-term ethanol consumption in rats. Alcohol. 2003 Jan;29(1):21-9.
  • Vendemiale G, Grattagliano I, Altomare E, Serviddio G, Portincasa P, Prigigallo F, Palasciano G. Mitochondrial oxidative damage and myocardial fibrosis in rats chronically intoxicated with moderate doses of ethanol. Toxicol Lett. 2001 Sep 15;123(2-3):209-16.
  • Kim SD, Beck J, Bieniarz T, Schumacher A, Piano MR. A rodent model of alcoholic heart muscle disease and its evaluation by echocardiography. Alcohol Clin Exp Res. 2001 Mar;25(3):457-63.
  • Ponnappa BC, Rubin E. Modeling alcohol's effects on organs in animal models. Alcohol Res Health. 2000;24(2):93-104. 32.
  • Ren J, Brown RA. Influence of chronic alcohol ingestion on acetaldehyde-induced depression of rat cardiac contractile function.Alcohol Alcohol. 2000 Nov-Dec;35(6):554-60.
  • Worrall S, Richardson PJ, Preedy VR. Experimental heart muscle damage in alcohol feeding is associated with increased amounts of reduced- and unreduced-acetaldehyde and malondialdehyde-acetaldehyde protein adducts. Addict Biol. 2000 Oct 1;5(4):421-7.
  • Patel VB, Sandhu G, Corbett JM, Dunn MJ, Rodrigues LM, Griffiths JR, Wassif W, Sherwood RA, Richardson PJ, Preedy VR. A comparative investigation into the effect of chronic alcohol feeding on the myocardium of normotensive and hypertensive rats: an electrophoretic and biochemical study. Electrophoresis. 2000 Jul;21(12):2454-62. 37.
  • Preedy VR, Patel VB, Reilly ME, Richardson PJ, Falkous G, Mantle D. Oxidants, antioxidants and alcohol: implications for skeletal and cardiac muscle. Front Biosci. 1999 Aug 1;4:e58-66.
  • Brown RA, Crawford M, Natavio M, Petrovski P, Ren J. Dietary magnesium supplementation attenuates ethanol-induced myocardial dysfunction. Alcohol Clin Exp Res. 1998 Dec;22(9):2062-72.
  • Piano MR, Schwertz DW. Effect of chronic ethanol exposure on myocardial phosphoinositide turnover. Alcohol Clin Exp Res. 1997 Jun;21(4):721-7.
  • Kita T, Nagano T, Kasai K, Tanaka N. E. coli endotoxin enhances cardiomyopathy in rats with chronic alcohol consumption. Int J Legal Med. 1996;109(1):37-41.
  • Brown RA, Sundareson AM, Lee MM, Savage AO. Differential effects of chronic calcium channel blocker treatment on the inotropic response of diabetic rat myocardium to acute ethanol exposure. Life Sci. 1996;59(10):835-47.
  • Patel VB, Corbett JM, Richardson PJ, Dunn MJ, Preedy VR. Chronic effects of alcohol upon protein profiling in ventricular tissue. Biochem Soc Trans. 1995 Aug;23(3):461S
  • Jaatinen PI, Saukko P, Sarviharju M, Kiianmaa K, Hervonen A. Effects of lifelong ethanol consumption on the ultrastructure and lipopigmentation of rat heart. Alcohol Alcohol. 1994 May;29(3):269-82.
  • Das AM, Harris DA. Regulation of the mitochondrial ATP synthase is defective in rat heart during alcohol-induced cardiomyopathy. Biochim Biophys Acta. 1993 Jun 19;1181(3):295-9.
  • Siddiq T, Richardson PJ, Mitchell WD, Teare J, Preedy VR. Ethanol-induced inhibition of ventricular protein synthesis in vivo and the possible role of acetaldehyde. Cell Biochem Funct. 1993 Mar;11(1):45-54.
  • Hininger I, Ribiere C, Nordmann R. Disturbances in myocardial creatine kinase following ethanol administration to rats--trials of prevention by allopurinol, desferrioxamine and propranolol. Alcohol Alcohol. 1991;26(3):303-7.
  • Gvozdjáková A, Kuznetsov AV, Kucharská J, Miklovicová E, Gvozdják J. The functional state of the creatine kinase system of myocardial mitochondria in alcoholic cardiomyopathy. Cor Vasa. 1991;33(4):343-9.
  • Preedy VR, Peters TJ. Changes in protein, RNA and DNA and rates of protein synthesis in muscle-containing tissues of the mature rat in response to ethanol feeding: a comparative study of heart, small intestine and gastrocnemius muscle. Alcohol Alcohol. 1990;25(5):489-98.
  • Preedy VR, Peters TJ. Synthesis of subcellular protein fractions in the rat heart in vivo in response to chronic ethanol feeding. Cardiovasc Res. 1989 Aug;23(8):730-6.
  • Gvozdják J, Gvozdjáková A, Kucharská J, Bada V, Kováliková V, Zachar A. Metabolic disorders of cardiac muscle in alcoholic and smoke cardiomyopathy. Cor Vasa. 1989;31(4):312-20. Clay MA, Stewart-Richardson P, Tasset DM, Williams JF. Chronic alcoholic cardiomyopathy. Protection of the isolated ischaemic working heart by ribose. Biochem Int. 1988 Nov;17(5):791-800.
  • Antonenkov VD, Panchenko LF. Effect of chronic ethanol treatment under partial catalase inhibition on the activity of enzymes related to peroxide metabolism in rat liver and heart. Int J Biochem. 1988;20(8):823-8.
  • Brautbar N, Altura BM. Hypophosphatemia and hypomagnesemia result in cardiovascular dysfunction: theoretical basis for alcohol-induced cellular injury. Alcohol Clin Exp Res. 1987 Apr;11(2):118-26.
  • Tsiplenkova VG, Vikhert AM, Cherpachenko NM. Ultrastructural and histochemical observations in human and experimental alcoholic cardiomyopathy. J Am Coll Cardiol. 1986 Jul;8(1 Suppl A):22A-32A.
  • Edes I, Takács O, Csanády M, Guba F. The effect of chronic alcohol ingestion on the contractile proteins of the rat heart. Acta Biochim Biophys Hung. 1986;21(3):205-14.
  • Factor SM, Sonnenblick EH. The pathogenesis of clinical and experimental congestive cardiomyopathies: recent concepts. Prog Cardiovasc Dis. 1985 May-Jun;27(6):395-420.
  • Klein HH, Spaar U, Kreuzer H. The effect of chronic ethanol consumption on enzyme activities of the energy-supplying metabolism and the alcohol-aldehyde oxidizing system in rat hearts. Basic Res Cardiol. 1984 Mar-Apr;79(2):238-43.
  • Posner P, Baker SP, Prestwich KN, Carpentier RG. The resistance of the cardiac muscarinic receptor to chronic ethanol ingestion in the rat. Subst Alcohol Actions Misuse. 1984;5(4):185-92.
  • Bogden JD, Al-Rabiai S, Gilani SH. Effect of chronic ethanol ingestion on the metabolism of copper, iron, manganese, selenium, and zinc in an animal model of alcoholic cardiomyopathy. Toxicol Environ Health. 1984;14(2-3):407-17.
  • Tomaru A, Mizorogi F, Fujita K, Nishiyama N, Miura Y, Matsuda F, Tanaka T, Horiguchi M. Alcoholic cardiomyopathy--acetaldehyde poisoning rat: myocardial and serum enzyme changes in acute exposure. Jpn Circ J. 1983 Jun;47(6):649-60.
  • Nagano M, Kageyama S, Shimizu M, Saito N, Anazawa S, Tomizuka S. Role of acetaldehyde in the pathogenesis of alcoholic cardiomyopathy. Recent Adv Stud Cardiac Struct Metab. 1976 May 26-29;12:335-43.
  • Morin Y, Roy PE, Mohiuddin SM, Taskar PK. The influence of alcohol on viral and isoproterenol cardiomyopathy. Cardiovasc Res. 1969 Jul;3(3):363-8.
  • Segel LD, Rendig SV, Choquet Y, Chacko K, Amsterdam EA, Mason DT. Effects of chronic graded ethanol consumption on the metabolism, ultrastructure, and mechanical function of the rat heart. Cardiovasc Res. 1975 Sep;9(5):649–663.
  • Kino M, Thorp KA, Bing OH, Abelmann WH. Impaired myocardial performance and response to calcium in experimental alcoholic cardiomyopathy. J Mol Cell Cardiol. 1981 Nov;13(11):981-9.
  • Pecherskaya A, Rubin E, Solem M. Alterations in insulin-like growth factor-I signaling in cardiomyocytes from chronic alcohol-exposed rats. Alcohol Clin Exp Res. 2002 Jul;26(7):995-1002.
  • Jing L, Li WM, Zhou LJ, Li S, Kou JJ, Song J. Expression of renin-angiotensin system and peroxisome proliferator-activated receptors in alcoholic cardiomyopathy. Alcohol Clin Exp Res. 2008 Nov;32(11):1999-2007.
  • Jing L, Zhou LJ, Li WM, Zhang FM, Yuan L, Li S, Song J, Sang Y. Carnitine regulates myocardial metabolism by Peroxisome Proliferator-Activated Receptor-alpha (PPARalpha) in alcoholic cardiomyopathy. Med Sci Monit. 2011 Jan;17(1):BR1-9.

 




有困惑?那就商量呗!

液体饲料的优点,你可以充分运用!

---------《》-------

marker可以任意缺乏或过载某营养素

marker可以任意添加药物或测试成分

marker可以精确定量饲料摄入量

marker可以任意定制饲料


小帮手
关闭
收藏本网站